4,425 research outputs found

    Hi-Fi: Hierarchical Feature Integration for Skeleton Detection

    Full text link
    In natural images, the scales (thickness) of object skeletons may dramatically vary among objects and object parts, making object skeleton detection a challenging problem. We present a new convolutional neural network (CNN) architecture by introducing a novel hierarchical feature integration mechanism, named Hi-Fi, to address the skeleton detection problem. The proposed CNN-based approach has a powerful multi-scale feature integration ability that intrinsically captures high-level semantics from deeper layers as well as low-level details from shallower layers. % By hierarchically integrating different CNN feature levels with bidirectional guidance, our approach (1) enables mutual refinement across features of different levels, and (2) possesses the strong ability to capture both rich object context and high-resolution details. Experimental results show that our method significantly outperforms the state-of-the-art methods in terms of effectively fusing features from very different scales, as evidenced by a considerable performance improvement on several benchmarks.Comment: IJCAI201

    Unsupervised Learning of Complex Articulated Kinematic Structures combining Motion and Skeleton Information

    Get PDF
    In this paper we present a novel framework for unsupervised kinematic structure learning of complex articulated objects from a single-view image sequence. In contrast to prior motion information based methods, which estimate relatively simple articulations, our method can generate arbitrarily complex kinematic structures with skeletal topology by a successive iterative merge process. The iterative merge process is guided by a skeleton distance function which is generated from a novel object boundary generation method from sparse points. Our main contributions can be summarised as follows: (i) Unsupervised complex articulated kinematic structure learning by combining motion and skeleton information. (ii) Iterative fine-to-coarse merging strategy for adaptive motion segmentation and structure smoothing. (iii) Skeleton estimation from sparse feature points. (iv) A new highly articulated object dataset containing multi-stage complexity with ground truth. Our experiments show that the proposed method out-performs state-of-the-art methods both quantitatively and qualitatively

    木を用いた構造化並列プログラミング

    Get PDF
    High-level abstractions for parallel programming are still immature. Computations on complicated data structures such as pointer structures are considered as irregular algorithms. General graph structures, which irregular algorithms generally deal with, are difficult to divide and conquer. Because the divide-and-conquer paradigm is essential for load balancing in parallel algorithms and a key to parallel programming, general graphs are reasonably difficult. However, trees lead to divide-and-conquer computations by definition and are sufficiently general and powerful as a tool of programming. We therefore deal with abstractions of tree-based computations. Our study has started from Matsuzaki’s work on tree skeletons. We have improved the usability of tree skeletons by enriching their implementation aspect. Specifically, we have dealt with two issues. We first have implemented the loose coupling between skeletons and data structures and developed a flexible tree skeleton library. We secondly have implemented a parallelizer that transforms sequential recursive functions in C into parallel programs that use tree skeletons implicitly. This parallelizer hides the complicated API of tree skeletons and makes programmers to use tree skeletons with no burden. Unfortunately, the practicality of tree skeletons, however, has not been improved. On the basis of the observations from the practice of tree skeletons, we deal with two application domains: program analysis and neighborhood computation. In the domain of program analysis, compilers treat input programs as control-flow graphs (CFGs) and perform analysis on CFGs. Program analysis is therefore difficult to divide and conquer. To resolve this problem, we have developed divide-and-conquer methods for program analysis in a syntax-directed manner on the basis of Rosen’s high-level approach. Specifically, we have dealt with data-flow analysis based on Tarjan’s formalization and value-graph construction based on a functional formalization. In the domain of neighborhood computations, a primary issue is locality. A naive parallel neighborhood computation without locality enhancement causes a lot of cache misses. The divide-and-conquer paradigm is known to be useful also for locality enhancement. We therefore have applied algebraic formalizations and a tree-segmenting technique derived from tree skeletons to the locality enhancement of neighborhood computations.電気通信大学201

    MAP: Medial Axis Based Geometric Routing in Sensor Networks

    Get PDF
    One of the challenging tasks in the deployment of dense wireless networks (like sensor networks) is in devising a routing scheme for node to node communication. Important consideration includes scalability, routing complexity, the length of the communication paths and the load sharing of the routes. In this paper, we show that a compact and expressive abstraction of network connectivity by the medial axis enables efficient and localized routing. We propose MAP, a Medial Axis based naming and routing Protocol that does not require locations, makes routing decisions locally, and achieves good load balancing. In its preprocessing phase, MAP constructs the medial axis of the sensor field, defined as the set of nodes with at least two closest boundary nodes. The medial axis of the network captures both the complex geometry and non-trivial topology of the sensor field. It can be represented compactly by a graph whose size is comparable with the complexity of the geometric features (e.g., the number of holes). Each node is then given a name related to its position with respect to the medial axis. The routing scheme is derived through local decisions based on the names of the source and destination nodes and guarantees delivery with reasonable and natural routes. We show by both theoretical analysis and simulations that our medial axis based geometric routing scheme is scalable, produces short routes, achieves excellent load balancing, and is very robust to variations in the network model

    Tropical Skeletons

    Get PDF
    In this paper, we study the interplay between tropical and analytic geometry for closed subschemes of toric varieties. Let KK be a complete non-Archimedean field, and let XX be a closed subscheme of a toric variety over KK. We define the tropical skeleton of XX as the subset of the associated Berkovich space XanX^{\rm an} which collects all Shilov boundary points in the fibers of the Kajiwara--Payne tropicalization map. We develop polyhedral criteria for limit points to belong to the tropical skeleton, and for the tropical skeleton to be closed. We apply the limit point criteria to the question of continuity of the canonical section of the tropicalization map on the multiplicity-one locus. This map is known to be continuous on all torus orbits; we prove criteria for continuity when crossing torus orbits. When XX is sch\"on and defined over a discretely valued field, we show that the tropical skeleton coincides with a skeleton of a strictly semistable pair, and is naturally isomorphic to the parameterizing complex of Helm--Katz.Comment: 42 pages. The introduction was rewritten. Corollary 8.15 was renamed to Theorem 8.1
    corecore