1,039,807 research outputs found
Automatically attaching web pages to an ontology
This paper describes a proposed system for automatically attaching material from the world wide web to concepts in an ontology. The motivation for this research stems from the Diogene project, which requires the project's own databases of learning objects to be augmented with additional resources from the web. Two main approaches to this problem are being taken: one using ontology mapping, and another based on the conventional text search facilities of the web, covered in this paper. By generating queries based on the concepts in the ontology, the aim is to retrieve material from the web, and then filter it to ensure its proper correspondence with a concept. The Diogene system will be briefly outlined, before the query-generation system is described. A small pilot experiment, designed to provide some initial results and insight into the problem, is then presented
Social Ranking Techniques for the Web
The proliferation of social media has the potential for changing the
structure and organization of the web. In the past, scientists have looked at
the web as a large connected component to understand how the topology of
hyperlinks correlates with the quality of information contained in the page and
they proposed techniques to rank information contained in web pages. We argue
that information from web pages and network data on social relationships can be
combined to create a personalized and socially connected web. In this paper, we
look at the web as a composition of two networks, one consisting of information
in web pages and the other of personal data shared on social media web sites.
Together, they allow us to analyze how social media tunnels the flow of
information from person to person and how to use the structure of the social
network to rank, deliver, and organize information specifically for each
individual user. We validate our social ranking concepts through a ranking
experiment conducted on web pages that users shared on Google Buzz and Twitter.Comment: 7 pages, ASONAM 201
How users assess web pages for information-seeking
In this paper, we investigate the criteria used by online searchers when assessing the relevance of web pages for information-seeking tasks. Twenty four participants were given three tasks each, and indicated the features of web pages which they employed when deciding about the usefulness of the pages in relation to the tasks. These tasks were presented within the context of a simulated work-task situation. We investigated the relative utility of features identified by participants (web page content,structure and quality), and how the importance of these features is affected by the type of information-seeking task performed and the stage of the search. The results of this study provide a set of criteria used by searchers to decide about the utility of web pages for different types of tasks. Such criteria can have implications for the design of systems that use or recommend web pages
- …
