256 research outputs found

    XML in Motion from Genome to Drug

    Get PDF
    Information technology (IT) has emerged as a central to the solution of contemporary genomics and drug discovery problems. Researchers involved in genomics, proteomics, transcriptional profiling, high throughput structure determination, and in other sub-disciplines of bioinformatics have direct impact on this IT revolution. As the full genome sequences of many species, data from structural genomics, micro-arrays, and proteomics became available, integration of these data to a common platform require sophisticated bioinformatics tools. Organizing these data into knowledgeable databases and developing appropriate software tools for analyzing the same are going to be major challenges. XML (eXtensible Markup Language) forms the backbone of biological data representation and exchange over the internet, enabling researchers to aggregate data from various heterogeneous data resources. The present article covers a comprehensive idea of the integration of XML on particular type of biological databases mainly dealing with sequence-structure-function relationship and its application towards drug discovery. This e-medical science approach should be applied to other scientific domains and the latest trend in semantic web applications is also highlighted

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Software platform virtualization in chemistry research and university teaching

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern chemistry laboratories operate with a wide range of software applications under different operating systems, such as Windows, LINUX or Mac OS X. Instead of installing software on different computers it is possible to install those applications on a single computer using Virtual Machine software. Software platform virtualization allows a single guest operating system to execute multiple other operating systems on the same computer. We apply and discuss the use of virtual machines in chemistry research and teaching laboratories.</p> <p>Results</p> <p>Virtual machines are commonly used for cheminformatics software development and testing. Benchmarking multiple chemistry software packages we have confirmed that the computational speed penalty for using virtual machines is low and around 5% to 10%. Software virtualization in a teaching environment allows faster deployment and easy use of commercial and open source software in hands-on computer teaching labs.</p> <p>Conclusion</p> <p>Software virtualization in chemistry, mass spectrometry and cheminformatics is needed for software testing and development of software for different operating systems. In order to obtain maximum performance the virtualization software should be multi-core enabled and allow the use of multiprocessor configurations in the virtual machine environment. Server consolidation, by running multiple tasks and operating systems on a single physical machine, can lead to lower maintenance and hardware costs especially in small research labs. The use of virtual machines can prevent software virus infections and security breaches when used as a sandbox system for internet access and software testing. Complex software setups can be created with virtual machines and are easily deployed later to multiple computers for hands-on teaching classes. We discuss the popularity of bioinformatics compared to cheminformatics as well as the missing cheminformatics education at universities worldwide.</p

    Engineering polymer informatics: Towards the computer-aided design of polymers

    Get PDF
    The computer-aided design of polymers is one of the holy grails of modern chemical informatics and of significant interest for a number of communities in polymer science. The paper outlines a vision for the in silico design of polymers and presents an information model for polymers based on modern semantic web technologies, thus laying the foundations for achieving the vision

    Nutritional Systems Biology

    Get PDF

    Design of a Structure Search Engine for Chemical Compound Database

    Get PDF
    The search for structural fragments (substructures) of compounds is very important in medicinal chemistry, QSAR, spectroscopy, and many other fields. In the last decade, with the development of hardware and evolution of database technologies, more and more chemical compound database applications have been developed along with interfaces of searching for targets based on user input. Due to the algorithmic complexity of structure comparison, essentially a graph isomorphism problem, the current applications mainly work by the approximation of the comparison problem based on certain chemical perceptions and their search interfaces are often e-mail based. The procedure of approximation usually invokes subjective assumption. Therefore, the accuracy of the search is undermined, which may not be acceptable for researchers because in a time-consuming drug design, accuracy is always the first priority. In this dissertation, a design of a search engine for chemical compound database is presented.The design focuses on providing a solution to develop an accurate and fast search engine without sacrificing performance. The solution is comprehensive in a way that a series of related problems were addressed throughout the dissertation with proposed methods. Based on the design, a flexible computing model working for compound search engine can be established and the model can be easily applied to other applications as well. To verify the solution in a practical manner, an implementation based on the presented solution was developed. The implementation clarifies the coupling between theoretic design and technique development. In addition, a workable implementation can be deployed to test the efficiency and effectiveness of the design under variant of experimental data

    The Janus Faced Scholar:a Festschrift in honour of Peter Ingwersen

    Get PDF
    • …
    corecore