
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Dissertations Department of Computer Science

5-2-2008

Design of a Structure Search Engine for Chemical
Compound Database
Hao Wang

Follow this and additional works at: https://scholarworks.gsu.edu/cs_diss

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It
has been accepted for inclusion in Computer Science Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For
more information, please contact scholarworks@gsu.edu.

Recommended Citation
Wang, Hao, "Design of a Structure Search Engine for Chemical Compound Database." Dissertation, Georgia State University, 2008.
https://scholarworks.gsu.edu/cs_diss/33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_diss?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_diss%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

 DESIGN OF A STRUCTURE SEARCH ENGINE

FOR CHEMICAL COMPOUND DATABASE

by

Hao Wang

Under the Direction of Robert Harrison

ABSTRACT

 The search for structural fragments (substructures) of compounds is very

important in medicinal chemistry, QSAR, spectroscopy, and many other fields. In the last

decade, with the development of hardware and evolution of database technologies, more

and more chemical compound database applications have been developed along with

interfaces of searching for targets based on user input. Due to the algorithmic complexity

of structure comparison, essentially a graph isomorphism problem, the current

applications mainly work by the approximation of the comparison problem based on

certain chemical perceptions and their search interfaces are often e-mail based. The

procedure of approximation usually invokes subjective assumption. Therefore, the

accuracy of the search is undermined, which may not be acceptable for researchers

because in a time-consuming drug design, accuracy is always the first priority. In this

dissertation, a design of a search engine for chemical compound database is presented.

The design focuses on providing a solution to develop an accurate and fast search engine

without sacrificing performance. The solution is comprehensive in a way that a series of

related problems were addressed throughout the dissertation with proposed methods.

Based on the design, a flexible computing model working for compound search engine

can be established and the model can be easily applied to other applications as well. To

verify the solution in a practical manner, an implementation based on the presented

solution was developed. The implementation clarifies the coupling between theoretic

design and technique development. In addition, a workable implementation can be

deployed to test the efficiency and effectiveness of the design under variant of

experimental data.

INDEX WORDS: Search engine, chemical compound, compound database, substructure

comparison, compound representation.

 DESIGN OF A STRUCTURE SEARCH ENGINE

FOR CHEMICAL COMPOUND DATABASE

by

Hao Wang

A Dissertation Submitted in Partial Fulfillment of Requirements for the Degree of

Doctor of Philosophy

In the College of Arts and Sciences

Georgia Stage University

2007

Copyright by

Hao Wang

2007

DESIGN OF A STRUCTURE SEARCH ENGINE

FOR CHEMICAL COMPOUND DATABASE

by

Hao Wang

Major Professor: Robert Harrison
Committee: Raj Sunderraman,

Yan-Qing Zhang
Irene Weber

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

May 2007

iv

Acknowledgments

 Firstly, my specific thanks go to my advisor, Dr. Robert Harrison, for his

guidance and precise advisement during the process of my PhD dissertation. The

dissertation would not have been possible without his help.

 Secondly, I would like to thank my committee members, Dr. Raj Sunderraman,

Dr. Yan-Qing Zhang, and Dr. Irene Weber for their well-appreciated support and

assistance.

 Finally, I want to thank my family and friends for their support and beliefs.

v

Table of Contents

ACKNOWLEDGMENTS .. IV
TABLE OF CONTENTS ...V
LIST OF FIGURES...VII
LIST OF TABLES .. VIII
ACRONYMS... IX
CHAPTER 1 INTRODUCTION...1

1.1. CHEMOINFORMATICS, CHEMICAL COMPOUNDS AND DATABASE QUERIES...................................1
1.2. DESIGN GOAL ...2
1.3. PROBLEM DEFINITIONS...3
1.4. ORGANIZATION ...4

CHAPTER 2 DATA STRUCTURE AND ALGORITHM FOR STRUCTURE COMPARISON6
2.1. INTRODUCTION ...6
2.2. THEORETICAL BACKGROUND AND RELATED WORK ...7
2.3. GRAPH-BASED DATA REPRESENTATION OF MOLECULES...10

2.3.1 Bond-partition based molecular representations ..11
2.4. ALGORITHM ..14

2.4.1 Initialize ...15
2.4.2 Shrinking of partitions ...16
2.4.3 Finding the starting partition index..16
2.4.4 Finding the starting bond index ...17
2.4.5 Breadth first search mapping (BFS mapping)...18

2.4.5.1 Definitions and terms .. 18
2.4.5.2 Operations .. 20

2.5. CONCLUSION ..26
CHAPTER 3 SEARCH ENGINE AND DATABASE ...28

3.1. CHEMICAL DATABASE...28
3.1.1 Chemical characteristics and indexing of database...29
3.1.2 Prevailing design of search engine for chemical database...31

3.2. COMPOUND DATA REPRESENTATION IN DATABASE ...31
3.2.1 Introduction ..32
3.2.2 Method ..33

3.2.2.1 Save/Retrieve General Data Type Instances Into/From Oracle Database 33
3.2.2.2 Building a domain specific language on top of SQL... 37

3.3. SCREENING ..39
3.3.1 Generation and search of distribution tree ..41

3.3.1.1 Generation of distribution tree ... 42
3.3.1.2 Search of distribution tree .. 43

3.3.2 Database and distribution tree ..45
3.3.3 Computing model ..46
3.3.4 Conclusion..46

3.4. ALGORITHM AND ITS INTEGRATION WITH DATABASE...47
3.4.1 Flexibility and upgradeability ...47
3.4.2 Association between database data and search algorithm ..49

vi

3.4.3 Design of Data Model ...49
3.4.3.1 Decoupling between database data and application.. 49
3.4.3.2 Design pattern of two-layer data architecture.. 52

3.4.4 Transformation from raw data to derived data..54
3.4.4.1 Representation of raw data.. 54
3.4.4.2 XML transformation .. 55

3.4.5 Application case: compound data in the database...57
3.5. CONCLUSION ..58

CHAPTER 4 IMPLEMENTATION OF THE SEARCH ENGINE..60
4.1. INTRODUCTION ...60
4.2. SYSTEM DESIGN ...61

4.2.1 System architecture ..61
4.2.2 Computation model design ..63

4.2.2.1 Interactivity ... 64
4.2.2.2 Nonatomic result return .. 65
4.2.2.3 Interactivity and its application in web service .. 66
4.2.2.4 Parallel/cluster computing .. 68

4.3. IMPLEMENTATION ...71
4.3.1 Data processing...71

4.3.1.1 Data source and preprocessing .. 71
4.3.1.2 Data representation for chemical compound... 73

4.3.2 Implementation of algorithm ..74
4.3.3 Implementation of screening ...75

4.3.3.1 Definition of the distribution tree.. 75
4.3.3.2 Partition of the distribution tree.. 77
4.3.3.3 Generation and persistence of the distribution tree.. 79
4.3.3.4 Search of the distribution tree and database... 83

4.3.4 Implementation of database ..83
4.3.4.1 Data representation for chemical compound in Oracle database .. 83
4.3.4.2 Integration of search function with Oracle database .. 85

4.3.5 Implementation of web interface ...87
4.3.5.1 Molecular editor ... 87
4.3.5.2 Design of web interface application ... 88

4.4. EXPERIMENTAL RESULT AND PERFORMANCE ..90
CHAPTER 5 CONCLUSIONS AND FUTURE WORKS...92
BIBLIOGRAPHY ..95

vii

LIST OF FIGURES

FIGURE 2-1 A PERMUTATION TREE FOR SOLVING GRAPH ISOMORPHISM PROBLEM......................................8
FIGURE 2-2 NUMERIC REPRESENTATION OF BOND TYPE ...11
FIGURE 2-3 COMMON REPRESENTATION OF AROMATIC RING..12
FIGURE 2-4 REVISED GRAPH REPRESENTATION OF ASPIRIN ..13
FIGURE 2-5 FLOWCHART OF THE ALGORITHM ..15
FIGURE 2-6 A SAMPLE MAPPING FOREST ...19
FIGURE 2-7 MAPPED NODE AND UNMAPPED NODE ..19
FIGURE 2-8 ACTIVE NODES (COLORED DARK BLUE IN THE FIGURE) ..20
FIGURE 2-9 AN EXAMPLE OF BOND LOCATING OPERATION (A) ..21
FIGURE 2-10 AN EXAMPLE OF BOND LOCATING OPERATION (B) ..21
FIGURE 2-11 BOND MAPPING OPERATION..23
FIGURE 2-12 A SAMPLE OF BOND MAPPING (A) ...23
FIGURE 2-13 A SAMPLE OF BOND MAPPING (B) ...24
FIGURE 2-14 ILLUSTRATION OF BFSMAPPING ..26
FIGURE 3-1GENERAL TYPE INSTANCE SERIALIZATION AS A LOB INSTANCE ...35
FIGURE 3-2 USING JAVA STORED PROCEDURE TO SAVE AND RETRIEVE GENERAL TYPE INSTANCE IN

ORACLE DATABASE..36
FIGURE 3-3 A CHEMICAL COMPOUND STRUCTURE GRAPH ..40
FIGURE 3-4 THE TREE REPRESENTATION OF SAMPLE COMPOUND’S CGDS ..42
FIGURE 3-5 THE DISTRIBUTION TREE OF WHOLE CHEMICAL COMPOUNDS..43
FIGURE 3-6 THE COMPOSITION OF GENERAL DATABASE DATA ..50
FIGURE 3-7 THE TWO-LAYER DATA MODEL ARCHITECTURE...51
FIGURE 3-8 THE MULTI-APPLICATION TWO-LAYER DATA ARCHITECTURE ..53
FIGURE 3-9 XML TRANSFORMATION USING XSLT ..55
FIGURE 4-1 SYSTEM ARCHITECTURE OF SEARCH ENGINE ...61
FIGURE 4-2 NORMAL DISTRIBUTION OF COMPOUND DATA IN TERMS OF ATOM SIZE....................................69
FIGURE 4-3 OBJECT HIERARCHY OF CHEMICAL COMPOUND DATA REPRESENTATION73
FIGURE 4-4 THE RELATIONSHIP AMONG ABSTRACT CLASSES AND IMPLEMENTATION CLASSES74
FIGURE 4-5 THE PARTITION OF COMPOUND DATA INTO DIFFERENT DISTRIBUTION TREES..........................78
FIGURE 4-6 A SAMPLE DISTRIBUTION TREE XML FILE ...82
FIGURE 4-7 DESIGN OF SEARCH ENGINE ...87
FIGURE 4-8 A SNAPSHOT OF WEB PAGE WITH MOLECULAR EDITOR APPLET LOADED88
FIGURE 4-9 A SNAPSHOT OF SEARCH RESULT WEB PAGE ...89

viii

LIST OF TABLES

TABLE 2-1 AGPM TABLE FOR SAMPLE CHEMICAL MOLECULE ...14
TABLE 3-1 A LIST OF SOME OF THE COMMON CHEMICAL DATABASES USED IN CHEMOINFORMATICS.28

ix

Acronyms

AGPM Atom Group Partition Mapping

LOB Large Object Byte

BFS Breath First Search

CGDS Compound-Group-Distribution-String

QSAR Quantitative structure-activity relationship

JDBC Java Database Connectivity

JSP Java Server Page

JSTL Java Server Page Standard Tag Library

1

Chapter 1 Introduction

1.1. Chemoinformatics, chemical compounds and database queries

Chemoinformatics is the study of the use of databases in handling chemical

knowledge. Chemoinformatics, unlike bioinformatics, focuses more on small molecules

and a wider range of molecules rather than genes and gene products. It serves a critical

role in the development of new materials and new pharmaceuticals by aiding in the

selection of starting points for experimental development [2, 24, 59] . As in

bioinformatics, many new structures along with their chemical properties are published

annually resulting in a huge mass of data that has to be organized into a database for

efficient search and recall [8-10, 12, 13]. Traditional relational database engines like

Oracle are required for performance because of the volume of data. However, the

properties of the data do not map directly into the purely numerical and string based data

types the relational database engines are designed to handle. Therefore one important

problem in chemoinformatics is the development of efficient representations of the

chemical and physical properties as well as the structures of molecules. Intimately related

to the development of the representation of molecular properties is the ability to compare

molecules and extract which ones are most similar in some sense [1, 2, 5-8, 10, 48]. The

ideal representation of chemical and structural data would allow for the rapid and highly

specific recall of molecules which are similar in structure and properties. Current

approaches tend to be either rapid and imprecise or precise and relatively slow [8, 14, 15,

24, 28, 33, 34, 39, 48, 53, 54]. Therefore the more accurately the chemical information

2

can be represented in the native representation for the database engine the more the

overall system meets this ideal.

 Typically there are three kinds of queries that are applied in chemoinformatics:

shared substructure, similar subset, and molecular property. In a shared substructure

query, molecules are selected that share a chemical group or structural framework but

differ in other features. For example, aspirin and benzoic acid share a benzene ring and

carboxylic acid group but do not share the phenol oxygen and acetyl group of aspirin. In

a similar subset query, features that are in common among a set of molecules are

extracted and then used to find similar molecules. Superimposing HIV protease

inhibitors, for example, would reveal that they share many structural features that would

not be readily apparent on casual inspection.[20, 35, 58] Finally, with molecular property

queries, molecules are selected based on a desired chemical feature or property. An

example of this would be the selection of hydrophobic monomers for the design of a

novel water repelling polymer.

1.2. Design goal

 The search for structural fragments (substructures) of compound is very important

in medicinal chemistry, QSAR, spectroscopy, and many other fields [8, 17, 18, 51]. In the

last decade, with the development of hardware and evolution of database technologies,

more and more chemical compound database applications have been developed along

with interfaces of searching for targets based on user inputs[4, 8, 11, 17, 18, 21-23, 25,

27, 30, 36-38, 40, 41, 44, 51]. Due to the computational complexity for structural

comparison, essential a graph isomorphism problem, the current applications mainly

3

work on the approximation of compound structure problem [12, 21, 23, 40, 43]. The

procedure of approximation usually invokes subjective knowledge and consequently

there exist many different approximations and their accuracies are usually closely

associated with the inputs [38, 41, 44].

 In this dissertation, a search engine for chemical compounds is designed and

developed with a focus on accuracy. The design is devoted to providing a computing

model of developing an approximation free substructure search engine for chemical

compound database but maintaining a high speed processing capability at the same time.

The design goal is comprehensive in the sense that such a goal has to deal with a series of

subproblems. Most of them are interesting research topics in themselves. In this

dissertation, however, those problems are explored under one goal: to design an efficient

and accurate compound search engine. As a result, the strategies and approaches for

different problems are inherently connected and consistent, they as a whole contribute to

the achievement of the final goal.

1.3. Problem definitions

 The goal involves a series of subproblems in which thoughtful consideration and

efficient solution is demanded. The description and definition of problems using

computer science language helps to make them easy to understand and discuss.

 The critical problems that are explored in the dissertation are listed as follows.

The coverage and resolution of those problems can directly lead to a design of backbone

computing model of a compound substructure search engine and any further problems

proved to be essential can be appended to the list when they are encountered.

4

• Computer data representation of compound structure

• The efficient substructure comparison algorithm

• The structure comparison algorithm under main-frame database system

• Logic preprocessing (screening) for compound structure search engine

• Interactivity in search engine and its application in web interface

 The dissertation is intended to present practical and efficient solutions for the

above problems. The solution for one problem may not be the best in an isolated

situation, but its connectivity with other solutions may prove its advantage in the overall

application design.

1.4. Organization

 The dissertation is organized as follows: In the chapter 2, we propose a bond

partition based compound data representation. Based on the data representation, a new

substructure comparison algorithm can be developed to efficiently process compound

structure comparison problem. Chapter 3 focuses on the database design, it includes data

representation persistence in a database, domain specific query layer, logic screening,

and the integration of data, algorithm and implementation under database infrastructure.

In the next chapter, a system implementation of search engine is demonstrated. The

implementation is designed to make a workable version and also addresses some realistic

problems under system level development. The implementations are based on the design

model and are used to test its efficiency and effectiveness. By feeding experimental data

and analyzing the result of output, the model can be refined and some conclusions of the

5

design can be drawn. In last chapter, a general conclusion and future work of

development are provided.

6

Chapter 2 Data Structure and Algorithm for Structure Comparison

2.1. Introduction

Chemoinformatics is the study of the use of databases in handling chemical

knowledge. Chemoinformatics, unlike bioinformatics focuses more on small molecules

and a wider range of molecules rather than genes and gene products. It serves a critical

role in the development of new materials and pharmaceuticals by aiding in the selection

of starting points for experimental development. One important problem in

chemoinformatics is the development of efficient representations of the chemical and

physical properties as well as the structures of molecules [46, 47, 55]. Intimately related

to the development of the representation of molecular properties is the ability to compare

molecules and extract those that are most similar in some sense. One way of doing this is

to calculate the structure fragment relationships among molecules. The ideal

representation of chemical and structural data would allow for the rapid and highly

specific recall of molecules which are similar in structure and properties [49, 50, 52-54,

56, 57].

In this chapter, a new graph representation of molecules is presented. The

representation is designed by taking close consideration of special features of chemical

compounds. The resulting chemical-context based graph representation hence contains

more information in its data representation. Based on the proposed representation, a new

substructure comparison algorithm is also presented, the introduction and analysis of

algorithm demonstrates its strong efficiency in solving structure comparison problem.

7

2.2. Theoretical background and related work

It is widely agreed by chemists and biologists that a chemical molecule can be

efficiently supported by a topological graph and a great range of hidden chemical

properties of the molecule can be further derived from that graph representation.

Therefore the problem of determining structure fragment relationship between two

molecules can be solved by using graph-based algorithms. In graph theory, it is officially

named as graph isomorphism which is believed to a NP complete problem. A

mathematical description of graph isomorphism problem can be illustrated as follows [1]:

Input Description: Two graphs, g and h.

Problem: Find a (all) mappings f of the vertices of g to the vertices of h such that g and h

are identical, i.e. (x,y) is an edge of g iff (f(x),f(y)) is an edge of h.

Given graph g(1, 2, 3) and graph f(a, b, c), where 1, 2, 3, a, b, c are the vertices of

two matching graphs. The search of mapping(s) is equivalent to exploring the

permutation tree of Fig.2-1. Without prior knowledge, the worst case search needs to

visit all the paths among root and leaves. The total number of paths amounts to a function

of the permutation of m and n, where m and n are the number of vertices of graph g and h.

Obviously, the number of paths goes beyond the polynomial range.

8

Figure 2-1 A permutation tree for solving graph isomorphism problem

In practical drug design, the application is considerably more complex than only

one pairwise comparison as an input chemical molecule needs to be compared over a

large collection of potential candidates in the database. The whole operation performs the

pairwise comparison n times if the search has to be repeated against n potential

candidates.

The interest to solve isomorphism problems efficiently started in the 60’s when it

was discovered that a chemical compound can be represented by a graph [1]. A back-

track mechanism was proposed to compare two structures by a searching route [8, 11, 14,

51]. In the early 70’s, Ullman proposed a backtrack algorithm for generalized

isomorphism, which even today proves to be one of most efficient algorithms targeting

the problem [44]. The algorithm can be applied to both substructure and maximum

substructure problems and subsequent research demonstrates the average running time of

this algorithm falls into an acceptable polynomial time complexity range. The general

graph isomorphism problem involves, by its very nature, heavy computation.

9

Consequently, in spite of tremendous research efforts directed towards this area, the

Ullman algorithm still remains one of the best graph-based isomorphism algorithms.

Later on, it was found that although a molecule can be represented as a complete

graph, fragments or substructures of the molecules may also carry chemical connotations

which may not be fully defined in graph representation [39, 49, 57]. Therefore, defining a

series of chemically sensitive fragments, followed by a graph representation with

existence indication of various fragments becomes another viable trend. As the number of

fragments and their connections is much less than the number of atoms and bonds, a set

of chemical sensitive fragments and their relationships can be used as molecular

fingerprints instead of defining molecules using complete graphs thereby simplifying the

computation. However, the selection of sensitive chemical fingerprints working for this

purpose is never easy to establish even for a particular case. The wide application of this

approach is thus restricted by the availability of valid fingerprints targeting various cases.

In addition, the fingerprint does not record complete connectivity of chemical molecule

and, as a result, the search result is not as accurate as graph-based approach. A basic rule

for these applications is that the experimental use of these molecules in a real chemistry

lab may take months or even years so it is important not to be overly aggressive at

trimming processing speed at the cost of missing critical leads.

Another trend for substructure searching is to use those soft modeling methods

[19, 30], such as genetic algorithm (GA) [45]. GA has widely demonstrated its potential

in the attempts to solve NP problems and has been applied toward this problem for a long

10

time. However, the approximate and nondeterministic nature of GAs means that they

should not be used when a feasible, conventional algorithm is available [51].

2.3. Graph-based data representation of molecules

A small molecule structure is mostly described by a topological graph. A graph is

called topological when it shows only the linkages between atoms and the type of bonds

between them. It is already proven and practically applied that graph representation is a

powerful tool for studying chemical structure problem. However, when working on graph

data and using subgraphs as patterns, the computations are very expensive due to absence

of any polynomial algorithm to solve the graph isomorphism problem. Current algorithms

for subgraph isomorphism feature exponential time complexity [1, 34].

The structure of a chemical molecule involves atoms and connection between

pairs of atoms. In the graph representation of molecular structure, the node is used for

atom and the edge is set by their connection. Although, the connectivity information is

conserved in the graph representation, it carries no classification information. As a result

the search routine can not speed up by taking that information into account.

 Unlike general graph, node and edge in the context of a chemical structure graph

are much more restrictive and have special meanings: A node presents an atom which in

theory comes from an element in the periodic table, and an edge is defined to present a

numeric connection value bounded by a constant value. In chemical parlance, the

pairwise atoms and their connections together are called bonds and a molecule structure

graph is actually constructed by a collection of bonds. The chemical definition of

molecular bonds can be used to classify them into limited number of groups/partitions

11

2.3.1 Bond-partition based molecular representations

A new way of representing a molecule can be made based on bond partition. In

this method, instead of representing atoms by their chemical symbols, atomic numbers

are used. The goal here is to classify the chemical bonds in a molecule into different

bond types. The significance of this design is that these atomic values can be further

used in calculations that are specific for each type of atom. In this design, a pair of atoms

and its bond order (collectively referred to as a bond type) are represented by 7 digits

(Figure 2-2). The first and the second 3 digits are the atomic numbers of the first and the

second atoms, respectively. The last digit represents the bond order between the two

atoms. In practice, several issues must be considered when converting the molecule into a

graph. An example is the representations of the ring system. Aspirin, for instance, can

have three different graphs that are chemically equivalent (Fig. 2-3). One way of

representing an aromaticity within a ring is to define the bond value of aromatic system

to be a specially fixed value. In the numeric representation this value is defined as 9.

This rule is enforced in all the inputs and data in the chemical database to ensure

structural compatibility during structure comparison.

Figure 2-2 Numeric representation of bond type

12

Figure 2-3 Common representation of aromatic ring

This design is based on the fact that each of the atoms has a unique atomic

number. The largest atom in the periodic table is 118; thus, it is more than enough to

have a 3-digit to present that numeric value. In this descriptor, two atoms are arranged in

an ascending order of their atomic numbers. For example, a bond type of a double bond

between a carbon and an oxygen can be defined as 0060082. In this representation, the

numerical value 6 is the atomic number of the carbon, 7 is the atomic number of the

oxygen, and the last digit 2 represents the double bond between the atoms. In a given

molecule, a bond type is determined for each of the bonds in the molecule. The bond

types are then collected into a bond group, based on the identities of the atoms that are

involved in the bonding and the bond order. Each bond group, therefore, consists of

bonds with identical pair-wise atoms and connection value. The atoms in the group are

represented by their positions (x, y). x represents the position of the atom with a lower

atom number, and y represents the position of the atom with a higher atomic number. A

bond partition of the aspirin graph is shown in Figure 2-4.

13

Figure 2-4 Revised graph representation of aspirin

The group appearing times of each atom in correspondence with each bond group

can be further derived and we have named that as Atom-Group-Partition-Map (AGPM).

AGPM is described as a two-dimensional table. In the table, each column designates a

bond group and each row represents an atom. A cell of the table holds an integer value

defined as the frequency at which the atom (defined by the row index) appears in a bond

belonging to a particular bond group (defined by the column index). A sample of the

AGPM table for chemical molecule of figure 2-4 is illustrated as follows:

14

Table 2-1 AGPM table for sample chemical molecule

6-6-1 6-6-9 6-8-1 6-8-2
1 1 2 1
2 1 1
3 1 1
4 1 1 1
5 1 1
6 1 1
7 1
8 1 1
9 1

10 1

2.4. Algorithm

The proposed new representation suggests that molecule bonds of a molecule can

be logically partitioned into different groups (partitions). As a result, graph

representation of molecule can be revised to reflect more chemical background.

 The introduction of bond partition provides more chemical context information

that can be used in solving molecule isomorphism problems. For a substructure

comparison problem: which is, given graph g and h, determine if g is a substructure of h.

Some statements can be derived after logic partition.

• After the partition, original permutation problem is equivalent to several

small-size permutation problems while boundary conditions are satisfied

• A valid permutation mapping exists only if at least a valid permutation

mapping exists between any two matching partitions of molecules

• The exploration of permutation tree and pruning of unqualified branches can

be simplified by taking account of additional partition context.

15

Figure 2-5 Flowchart of the algorithm

Consequently, a new graph algorithm for molecule substructure problem is

presented as follows. Without loss of generality, the input of algorithms is two chemical

molecules and they are represented by the format introduced in previous section. The

entire workflow of algorithm can be illustrated by a flowchart (fig. 2-5) and the algorithm

takes five steps:

2.4.1 Initialize

The algorithm not only tells if there is a substructure relationship between two

molecules, but also shows the matching atom mapping between two molecules. If more

than one mapping exists, all of them will be returned. This step is designed to define

necessary variables and specify their initial value.

The algorithm defines a mapping by the format of an integer array. The array

stores the matching atom positions of molecule2. For an element in the array, assume the

index of element as x, and the value of element as y, where both x and y are integers and

array index starts from 1. The element indicates a mapping relationship that the atom of

16

xth position in molecule1 is mapped with the atom of yth position in molecule2. The

length of array is determined by the minimum logic of atom size of molecule1 and

molecule2. The array is initialized to -1 for every element, which means mapping has not

been established yet.

2.4.2 Shrinking of partitions

The step directly comes from the statement “For substructure comparison, a valid

permutation mapping exists for two molecules only if a valid permutation mapping exists

between any two matching bond groups of two molecules”. The statement implies that if

there is a mapping between two molecules, the partitions of the smaller molecule must be

a subset of those of the bigger one. Any partitions in the bigger molecule which are not in

the smaller molecule play no role in the final mapping and thus are safe to discard.

As a result, assuming molecule1 is the smaller molecule, the first activity of this

algorithm is to determine if partitions of molecule1 are a subset of partitions in

molecule2. Negative “no” means no further processing is necessary and the algorithm

returns with the output of no mapping. For the positive answer, the algorithm continues

with elimination of those partitions in molecule2 that are not found in molecule1.

After this step, two input molecules are the same in terms of their partitions and

their indices in the two molecule representations.

2.4.3 Finding the starting partition index

The algorithm needs to determine which bond to start mapping with and it takes

two steps. In step 3, the partition index of starting bond is resolved. The basic rule

dictates that the starting partition be the one that has least permutation of bond mapping.

17

 Assume, for xth partition, molecule1 contains n bonds while molecule2 has m

bonds. The possible permutation among bonds of two molecules is defined as follows:

)1:2?(*)1...(*)1(*)(SameisTwoAtomsnmmmnpermutatio x +−−= (2-1)

Thus the search for the partition index of least bond mapping permutation is done

by calculating possible bond permutations for all index partitions. The index of the first

partition producing the lowest permutation value is the output for this step.

2.4.4 Finding the starting bond index

The mapping of the algorithm starts with a chosen bond from a partition

generated by the previous step and the starting bond index of that bond is calculated in

this step. The basic rule for the starting bond is to locate a bond with the most

complicated bond partition distribution. In previous section, the concept of Atom-

Graphic-Partition-Mapping is introduced. Based on AGPM, a numeric value, judging the

complexity level of the atom, can be calculated as follows: where x and y refer the row

and column index of AGPM.

)y,x(AGPM:1?0)y,x(AGPM)y,x(atom −=== (2-2)

∑
=

=
)AGPM(column

1y

)y,x(atom)x(atom (2-3)

The algorithm conveys a proposed complexity definition: the more diverse

neighbors an atom connects, the more complicated the atom is.

The complexity definition can be extended to a bond by considering both atoms.

)y(atom)x(atombond += (2-4)

18

Consequently, the search for the most complicated bond can be taken by

calculating complexity values for all the bonds in given partition, the first one with

highest value is the final output.

2.4.5 Breadth first search mapping (BFS mapping)

This step is the core part of the whole algorithm. The name BFS Mapping comes

from the fact that the whole mapping procedure can be visually represented by the

generation of a mapping forest with a breath first search order (BFS).

Some definitions are given first to make it easy to illustrate the algorithm.

2.4.5.1 Definitions and terms

♦ Mapping forest

A mapping forest embodies the mapping abstraction between two molecules. The node

of the forest stands for an atom mapping and is valued as a position pair (x, y), where x

and y are mapping atom positions of molecule1 and molecule2. A sample of mapping

forest is depicted as follows (fig. 2-6). Note here, due to possible existence of more than

one substructure mapping between two molecules, the BFS mapping may generate more

than one mapping forest.

19

7-7' 4-1'

5-6' 3-2'

6-5' 2-3'

1-4'

Figure 2-6 A sample mapping forest

♦Unmapped nodes and mapped nodes

The nodes in the mapping forest have two stages: mapped and unmapped. The left node

in figure 2-7 is a mapped node and right node is an unmapped node. The difference

between these two lies in the fact that the mapped node has already located position of

the mapping atom in molecule2 while unmapped node has not.

Figure 2-7 Mapped node and unmapped node

20

♦Active nodes

Active nodes are a set of mapped nodes which are currently acting as roots for the next

round of mapping forest generation. The active nodes involve both operations that

mapping forest may have, which will be discussed in the following section (Fig. 2-8).

Figure 2-8 Active nodes (colored dark blue in the figure)

2.4.5.2 Operations

The generation of mapping forest involves two operations, bond locating and bond

mapping.

♦Bond locating

The purpose of Bond locating is to expand the current mapping forest into next level. In

the design, the input for the Bond locating is the set of current active nodes in the

mapping forest and those atoms of the input molecule (molecule1) are extracted from

active nodes to work as the root nodes. Bond locating searches each of those atoms for

its existing direct neighbors through the support of AGPM table and bond-partition

structure. Those neighbor atoms will be constructed into the unmapped nodes and

appended into the mapping forest as the direct children of initial active node. If bond

21

locating can not expand any active nodes, the whole algorithm stops with a success for

establishment of substructure mapping.

The whole operation can be illustrated by following example, assuming there is one

active node 4-1, as shown in figure 2-9. The atom 4 comes from the input molecule and

is used to search for unexplored direct neighbor atoms. From the current AGPM table,

atom 4 appears once in an unexplored bond residing in bond group 6-6-1. Then by a

search against bond group 6-6-1, it is observed that bond (4, 5), which contains atom 4,

is the bond we are looking for.

Figure 2-9 An example of bond locating operation (a)

The new explored bond (4, 5) will be added into mapping forest and the bond group

and AGPM table are updated to reflect the progress, as illustrated in figure 2-10.

Figure 2-10 An example of bond locating operation (b)

22

♦Bond mapping

Bond mapping is designed to fill the mapping of the atoms. However, instead of

searching for a mapping atom based only on atom types, the operation should function

under a bond based context.

The bond mapping normally follows bond locating operation. There exists one

exception, however, which is the very first bond mapping. As introduced before,

mapping forest starts with a starting bond which is constructed by two unmapped nodes.

The bond mapping of these two unmapped nodes is made by applying the same

selection rule onto target molecule: 1) the mapping bond in target molecule has to come

from the bond group that has the same group index of starting bond. 2) The complex

value of mapping bond has to be at least the same as that of starting bond. By

calculating complex value for each bond in candidate bond group, the bond with

satisfied value is chosen to be the mapping bond for the starting bond. It is possible

there is more than one bond that is qualified for bond mapping. The bond mapping

responds to that by spawning more mapping forests to reflect those additional mapping

choices. Although in practice, that possibility is fairly rare due to the designed selection.

Bond mapping mainly operates just after bond locating. Here bond mapping works

towards those bonds that have a mapped node and an unmapped node, and then the

operation settles the mapping atom for that unmapped node. (Fig.2-11). The bond

mapping thus works under a restriction: The mapping bond in target molecule has to be

in a bond group with same group index as the bond in input molecule and one atom end

of that bond is already determined. The operation can be best illustrated by a sample as

23

in Figure 2-12 (the bond (4, 5) of input molecule is in bond group 6-6-1, which is not

identified in the figure). Bond mapping locates the AGPM table with the cell that

corresponds to the group 6-6-1 and atom 1. The cell has value 1 which assures there is

one qualified mapping bond, as in the bond locating, the mapping atom for that bond in

mapping forest can be determined by searching against bond group 6-6-1 and both

APGM and bond group are updated as shown in figure 2-13.

4-1'

5

4-1'

5-6'

Figure 2-11 Bond mapping operation

The lookup cell may have value bigger than 1. The bond mapping may be ambiguous

when a new mapping forest has to come into existence. The new mapping forest will be

the exact same except for one node difference which amounts to the other mapping

choice for the last bond mapping operation. The algorithm has a stack to hold all newly

generated mapped forests for future processing. The generation of new mapping forest

can happen in any bond mapping operation. The intention to use a first-in-last-out stack is

to make those more matured mapping forests processed before the others.

Figure 2-12 A sample of Bond mapping (a)

24

Figure 2-13 A sample of Bond mapping (b)

The general bond mapping operation can be defined as following pseudo code:

/* BondMapping:

Input:

A mapped node (inputNode1), an unmapped node inputNode2), a global

stack (forestStack) for new generated mapping forests, and current

AGPM for molecule2 (AGPM2)

Output:

 One mapped node which is generated from unmapped node

(inputNode2). If more than one possibility exists. New mapping

forest will be generated based on the current mapping

forest. AGPM2 will be modified during the procedure to reflect

the generation of new mapping

*/

1. Atom parentAtom1 = atomInMolecule1(inputNode1)

2. Atom childAtom1 = atomInMolecule1(inputNode2)

3. int groupIndex = groupOf(parentAtom1, parentAtom2)

4. Atom parentAtom2 = atomInMolecule2(inputNode1)

5. Array groupDistributionParentAtom2[] =

6. groupOfAtom(parentAtom2)

7. int distributionParentAtom2 =

25

8. groupDistributionParentAtom2[groupIndex]

9. List bondList = bondListInMolecule2(groupIndex)

10. for (int i = 0; i < distributionPaneAtom2; i++)

11. Bond bond = bondList.next()

12. if (bond.contain(parentAtom2))

13. if (i == 0)

14. inputNode2.setAtom(

15. bond.anotherAtom(parentAtom2))

16. AGPMUpdate(AGPM2)

17. elseif

18. MappingTree newTree = clone(currentTree)

19. newTree.inputNode2.setAtom(

20. bond.anotherAtom(parentAtom2))

21. AGPMUpdate(AGPM2)

22. treeStack.push(newTree)

With the introduction of above definitions, the BFS Mapping can be defined as a

procedure to generate mapping forest for two input molecules. The procedure works in

a loop, which first makes the bond locating based on active nodes, followed by the

bond making and reassignment of the active nodes. The BFS Mapping succeeds when

no further bond locating can be made for current active nodes, which indicates a

substructure mapping between two input molecules, or fails when no bond mapping can

be established. The whole operation is illustrated by a sample case illustrated in figure

2-14.

26

Figure 2-14 Illustration of BFSMapping

2.5. Conclusion

Based on a new bond-partition based graph representation, the proposed

algorithm fully explores the specific chemical structure classification of a molecule. The

algorithm starts with a pair of mapping bonds by fully exploring bond distributions

between two molecules. With the introduction of mapping forest abstraction, the search

routine is logically simplified with two repeatedly interweaved operations: bond locating

and bond mapping. The two operations are inherently straightforward and involve little

27

computation. The implementation and experimental results demonstrate that the

algorithm yields high performance in most of the test cases and hence is efficient in

solving the molecular substructure comparison problem. The basic idea of data

representation and algorithm can be applied to other graph isomorphism fields as long as

a valid classification can be drawn.

28

Chapter 3 Search Engine and Database

3.1. Chemical database

Chemical databases store chemical structures and associate information. The

sizes of the structures stored in databases can range from those of small molecules, as in

the Cambridge Structural Database and Inorganic Crystal Structure Database, to those of

macromolecules such as proteins and nucleic acids stored in the Protein Databank (PDB)

database, Table 3-1. Other databases, such as Quantum Chemical Literature Database,

store information from the literature regarding chemical properties that can be used in the

analysis. Other useful chemical databases include PubChem, KEGG LIGAND Database,

ChemIDplus, Indiana University Molecular Structure Center, NCI-3D Database, and

Chmoogle .

Table 3-1 A list of some of the common chemical databases used in chemoinformatics.

Data Source Web Sites

Cambridge Structural Database www.ccdc.cam.ac.uk.

Databases on STN International http://www.stn-international.de/stndatabases/c_datab.html

Protein Database www.rcsb.org.

NCBI PubChem http://pubchem.ncbi.nlm.nih.gov

KEGG LIGAND Database http://www.genome.jp/ligand

National Library Medicine Specialized
Information Service http://chem.sis.nlm.nih.gov/chemidplus/

Indiana University Molecular Structure
Center http://www.iumsc.indiana.edu/database/index.html

TOXNET (Toxicology Data Network) http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?Multi

eMolecules Chemical Searching http://www.chmoogle.com/

29

3.1.1 Chemical characteristics and indexing of database

Relational databases are the prevailing type of databases used to store chemical

information. They are powerful tools for organizing information; however, they are

designed to handle numeric and string data rather than chemical structures. Therefore,

the characteristics of the chemical structure must first be converted into a representation

using strings and digits that is in turn, stored inside the database. Clearly the choice of

this transformation will affect the flexibility and accuracy of the recall process. The

characteristics can be any of the properties and features of the molecule. This method of

labeling, or indexing, of the characteristics allows the information to be stored efficiently

in the relational database. Another purpose of indexing the database is to pre-determine

the solutions to some of the expected queries to shorten the response time. For instance,

the result returned by popular search engines (such as Google, Yahoo, and MSN) is an

indexed portion of pre-search pages. This allows the viewers to access the pages without

having to wait for tedious calculations.

In chemical databases, indexing can be used to label chemical features. Two

methods that have been used to index the chemical databases are a fragment code and a

fingerprint.

The fragment code method [10, 49] is sometimes referred to as a structural key

method. In this method, the molecule is broken down into fragments with pre-defined

patterns. Each of the patterns represents a characteristic (such as atomic content,

functional groups, ring systems, etc.) of a molecule. Depending on the molecules,

different types of fragment codes can be defined. String representations, like SMILES,

30

are well suited to this decomposition. Unlike the canonical structures, fragment codes can

be ambiguous, and different structures could possess identical fragment codes. This is

because the code does not specify the connection orientation. The key in designing a

fragment code dictionary is to first determine the type of search that will be performed on

the databases. This is to optimize the search performance by eliminating the irrelevant

molecules, which, in turn, reduces the searching time. It is also necessary to design the

dictionary according to the compounds stored in the database and the queries that might

be submitted. Although any type of chemical features and queries maybe used, there are

certain types that are frequently encountered.

A fingerprint method [49, 57] describes properties and characteristics of a

molecule using a string of binary digits 1 and 0: 1 represents a positive response and 0

representing a negative response. The string can be of any size, which allows as many

chemical features and properties of a molecule to be expressed. A fingerprint of a

benzoic acid, for example, can be 111 for the presence of a benzene ring, a carbonyl, and

a hydroxyl group, respectively. If a second molecule with a fingerprint of 011 is

compared with the acid’s fingerprint, the difference between the two fingerprints

indicates that the second molecule contains a carbonyl and a hydroxyl, but no benzene

ring. Because of its flexibility, the fingerprint method is often used as a similarity

measurement tool between structures and/or in a substructure searching routine during

the screening of the molecule databases.

31

3.1.2 Prevailing design of search engine for chemical database

Search engine queries the chemical database for potential targets and uses search

algorithm to determine their structural relationships. A non-trivial chemical database

contains a large volume of chemical compounds thus speed must be a concern for the

design of search engine.

To meet the speed requirement, in the prevailing design of search engine, instead

of storing exact chemical structures into database, fragment codes or fingerprints of

molecules are saved in the chemical database. The search of potential targets in the

database only invokes the comparison of string or numeric representation of molecules,

for which traditional database engines are designed. The design, however, reduces the

accuracy because not all molecular properties were kept in the database and are used for

the target filtering. .

3.2. Compound data representation in database

An efficient search engine often requires a close coupling of the search algorithm

and database implementation. For a search application based on chemical compound

database, the database must process the data representation of chemical compounds based

on the search algorithm. Advanced algorithms often introduce data representations which

are not directly supported by mainframe databases, which imposes a practical constraint

on the implementation of those algorithms onto the database. In addition, the current

database only supports relationships on pre-defined data types, which greatly impedes the

application of domain specific queries onto database. A general design for seamlessly

coupling data representation used by various algorithms and mainframe database systems

32

is presented in this section. The purpose of the design is to eliminate the algorithm

dependency on the database in terms of data representation and definition of relationship

3.2.1 Introduction

One of the critical steps in drug discovery and chemical research is compound

identification or compound screening[18, 29]. The compound identification problem is

equivalent to an operation of a compound search engine in a real application. The

procedure finds a structure, a substructure, or a compound fragment in one or more of the

structures in a chemical database. Therefore, the approach to represent, store, and retrieve

chemical compounds efficiently in a de facto database is a key factor for the successful

development of a search engine. However, an approach that applies to the general case is

not trivial: a) Currently, search algorithms are not constrained to use primitive data

types[17, 18, 23, 30, 40, 44]. Therefore, the attempt to apply those algorithms onto

database has to deal with how to represent, and save advanced data types in mainframe

database. b) The search of relational database is based on relationship, however, there are

no predefined relationships regarding chemical compound fragments. Therefore, a direct

statement such as “find all compounds that have equivalent structures to that of the input

compound A in a chemical database” is not straightforwardly interpretable by database

engine. Structure similarity relationship that allows two chemical structures to be

compared must be developed and applied to SQL level so that the relationship query can

be made.

Some approaches have been proposed to make structure and sub-structure

searching feasible in database. These include the conversion of structural compounds to

33

strings that are easily recognized by database engine. This approach converts a chemical

structure to a unique string (Wiswesser Line Notation (WLN), ROSDAL (Representation

of Organic Structures Description Arranged Linearly), and Simplified Molecular Input

Line Entry System (SMILES)) [17]; hence, a simple string matching can be performed

[40]. However, it is obvious that a complex structure, which can be viewed as a graph in

computer science, cannot be converted to a string without losing information. For

example, two different structures can have the same topologic index representation. In

other words, two different compounds may have the same string representation [17, 18].

 To solve these problems, in this part, a general method is presented. The method

is designed to eliminate data type constraints for potential search algorithms. Based on

that, a model to define and apply complicated relationship on top of current relational

database is also introduced, which provides a solid foundation for the application of

domain specific queries in the current database.

3.2.2 Method

3.2.2.1 Save/Retrieve General Data Type Instances Into/From Oracle Database

 A general instance, such as an object instance in Java, cannot be saved directly

into the database. This barrier comes from the fact that there may be no corresponding

data type in the database that supports such data. Although some databases allow self-

defined types, even object types, wrapping a general language instance using the database

language is a difficult task because SQL is not as powerful as a general language in this

aspect. However, it is still possible to save a general type instance into a database. This

34

can be done using two techniques: large object (LOB) for a database and instance

serialization for a general language.

♦LOB: LOB is a data type that is supported by a large number of database

management systems (DBMS). The introduction of the data type is for the convenience

of saving data with large size, such as movies and/or pictures. The database does not

interpret this data type, and LOB can be saved or retrieved as a binary or character

stream.

♦Instance serialization in a general language: Serialization is primarily used to

transfer data from an unstable medium (such as computer memory) into a stable

medium (such as a computer hard drive). A program running in the memory must save

certain important information into the hard drive to make it available later. This

procedure is defined as serialization, which generally is a built-in component in

advanced computer languages. Although most general languages support

serialization/persistence, they may differ in the implementations of the mechanism. As a

consequence, serializing an instance using one language and deserializing the instance

by another language is prone to errors. Furthermore, the serialization can be extended

to object instance.

 These two techniques can be used collaboratively to make it possible to save

general type instances into database. The figure below demonstrates the basic idea.

35

Figure 3-1General type instance serialization as a LOB instance

According to Figure 3-1 the program that has the language instance launches the

serialization as usual. However, instead of launching as default that pipes into the hard

drive, the instance is redirected into a database from the conduit (some database access

interface). The instance flows through the conduit and persists into the destination

database as a LOB instance. The retrieval procedure is simply a series of reversed

actions, in which the program first obtains language instances as LOB instances. These

instances are then deserialized and the cast into the original language type. During the

entire execution process, the database does not interpret the language instances. It simply

behaves as a unit of storage and provides the mechanism for stream instance to and from

the database.

 Deserialization and casting must be performed in the same language context.

During the serialization steps, the overall procedure may involve a lot of network

communication, since serialization and deserialization may occur on different host

computers in a client/server model. In addition, a client program must have a prototype

definition of the processed instance; otherwise, it will not have the knowledge of how to

36

make the casting. Oracle database along with Java language encoding offers a perfect

platform for the proposed method. The Java language is well known for its capability to

represent various objects. Oracle 8i databases, and the later versions, come with an

integrated Java Virtual Machine known as the Oracle JVM [31]. The Oracle JVM allows

users to deploy and run Java program, known as Java stored procedure/Java stored

function (a short Java program), in the Oracle database [31]. With the advent of Java

stored procedure, Oracle database provides an alternative to writing business logic in

PL/SQL.

 We can adapt Java stored procedure to save and retrieve general type instances in

Oracle database, as shown below:

Figure 3-2 using Java stored procedure to save and retrieve general type instance in Oracle database

The Java stored procedure resides inside the database, and has the capability to

process all types of instances coded by Java language. For this reason, we choose to use

Java language to encode chemical compound representation, which later can be used in a

search algorithm. Given the chemical compound prototype, Java stored procedure can

serialize and save the representation into a database as a LOB object, as well as retrieve

37

the LOB object from the database and cast the object into meaningful chemical

compound type instance.

3.2.2.2 Building a domain specific language on top of SQL

 A chemical compound search engine must know how to handle structural queries,

which requires a predefined relationship for comparison of compounds. However, using

the traditional SQL commands like “select * from chemicalDatabase where compound =

inputCompound” cannot yield the desired results because the traditional SQL can only

handle the primitive (string, number, date) datatypes. Therefore, a domain specific

language that knows how to process a chemical compounds query will be designed for

the search engine.

 Because a chemical compound can be represented as a Java object and the search

algorithm logic inside the Java object can be easily deployed, Java language can be used

to build a domain specific language on top of SQL. A Java class can behave as a domain

specific layer on top of the traditional SQL layer. A few member functions of the class,

such as isEqual() and isSubStructure(), can be exposed publicly as a Java stored

procedure and behave as an interface corresponding to relationships defined in the

chemical compound search. The call of Java stored procedure invokes the logic

processing wrapped in the Java class, which is coded by Java language and implemented

in the class. Java stored procedure can, then, work as a domain specific language parser,

converting a domain specific relationship hidden in a basic SQL into a member function

call.

38

 A simple pseudocode for accomplishing exact compound match is illustrated as

follows:

1. Java stored procedure parses the user input and determine it is

a exact compound match search

2. Retrieve all compound objects from database, recast them into

the Java object, and save into an array.

3. for each Compound object

4. Call member function isEqual(),save the Compound object

 output representations which yield expected result into a

 result array.

5. Return the result array back to end user initiating the query.

Other relationships like substructure or similar structure have a similar pseudo code,

except for calling different member functions.

 The above pseudo code assumes chemical compounds already have been saved

into the database as Java objects. This preliminary procedure can be carried out by the

following pseudo code:

1. Set up a connection with Oracle database

2. for each Compound ListMolcompound _∈

3. do Persistent compound into persistent_compound

4. save persistent_compound as LOB object in Oracle

database

5. end for each Compound

39

 Users are allowed to extract as much of the chemical information, such as the

functional groups, as they wish from the chemical compounds. This information can then

be saved as properties into the compound objects.

3.3. Screening

Search algorithm is used by search engine to determine pairwise compounds’

structure relationship. However, in the drug design, which is the realistic background for

chemical compound searching, the application is beyond just pairwise comparison of the

chemical compounds. Instead, an input chemical compound needs to be compared over a

collection of chemical compounds in the database. The practical search is trying to find

one or a predefined number of the most consistent chemical compounds. The whole

operation expands n time longer compared with pairwise comparison if the comparison

has to be repeated against n candidate compounds.

A straightforward question is do we need to search over all the compound

candidates in the database to collect the final targets. The answer is an obvious no. Take

substructure search as an example. Given an input chemical compound, the candidate

compounds that may contain the input compound have to be at least the same size as the

input one in terms of the number of atoms. A search engine for compound substructure

can make use of the above logic to speed up the search practice. One design is to

associate individual compound table with atom size, a compound table contains only

compounds with the same atom size. Therefore, after determining the atom size of a

given compound, only compounds in the tables with at least that size need be visited by

the search engine.

40

For a chemical compound substructure search, more logic can be used to improve

the search speed. As introduced in chapter 2, a chemical compound can be partitioned

into different bond groups. For the chemical compound depicted below, its group

distribution is listed as follows:

Figure 3-3 A chemical compound structure graph

(Group 1) C-C-1 (60061) (2, 3) (4, 5) (6, 1) (4, 8) (8, 10)

(Group 2) C-C-2 (60062) (1, 2) (3, 4) (5, 6)

(Group 3) C-N-1 (60071) (1, 7)

(Group 4) C-O-2 (60082) (8, 9)

 The group distribution of a chemical compound can be defined as a string with the

following syntax:

+)bondSize,iptorGroupDescr((3-1)

Where GroupDescriptor is the unique integer value associated with each

group, and the pairs are sorted descendingly based on their GroupDescriptor value.

 If we give the name compound-group-distribution-descriptor (CGDS), the CGDS

for sample compound is:

)5,60061)(3,60062)(1,60071)(1,60082((3-2)

 The CGDS may not be unique for different compounds. However, a compound is

a substructure of another only if its CGDS satisfies a certain assertion with the other

CGDS, and the assertion is:

41

 For two compounds: comound1 and compound2, molecule2 contains molecule1

only if: for any matching groups in two molecules,

)compound,x(bondSize)1compound,x(bondSize ≤ , (3-3)

where x is the group index and two compounds have the same type of groups.

 The assertion will apply on searching, which greatly narrows down the potential

searching targets. The problem is how to design a data model in the database which is

efficiently partitioned to apply the assertion.

 In the first example, the data model in database design has a partition which

embodies the concept of compound distribution based on atom size. But the partition is

not general because a) data model in relational database is limited to represent

complicated partitions, b) direct coupling of data model with partitions is not viable since

further adjustments or upgrades may be necessary.

Although the concept is clear, the underlying partition which supports that

assertion is not easy to implement even without considering database limitations.

3.3.1 Generation and search of distribution tree

 Take the CGDS of the above sample as an example, the string describes the

group distributions descending from left to right. The assertion needs to be applied to

each group type. Therefore, it will be beneficial to have the partitions of underlying

structure listed in the same way as the CGDS string. A straightforward but efficient way

to describe group information can be made by using tree structure.

 If we define the nodes in the tree to be associated with groups, the CGDS string

can be represented by a full path from the root to a leaf. The order from left to right is

42

converted to a parent-child link in the tree (Fig. 3-4). Because the assertion takes two

steps, we split the group descriptor and bond size with two adjacent nodes in the tree to

simplify the operation. A group descriptor node may have more than one child but the

bond size node only has one child node, which is the next level group descriptor node.

Figure 3-4 The tree representation of sample compound’s CGDS

3.3.1.1 Generation of distribution tree

 The different CGDS leads to a different path, although two paths may share some

common nodes. By our definition, for any two nodes in a tree sharing the same parent,

the order of nodes to the parent is determined by their numeric values: the smaller the

value is, the lower position the node will be (Fig 3-5). A unique distribution tree can be

generated after processing all the compounds in the database. The distribution tree fully

represents the compounds distribution based on their CGDS, and it can be further

modified if there is any change in the underlying compound data without regenerating

the tree.

43

60082

...

...

1 60071 60062 600611 3 5

60081 2 60072 2 60071 3 60062 2 60061 6

2 60072 2 60071 600721 2 60061 6

Figure 3-5 The Distribution tree of whole chemical compounds

3.3.1.2 Search of distribution tree

 The search of distribution tree for potential targets is based on the input

compound CGDS. General speaking, the search involves two activities: finding the

collection of group matching nodes and asserting their bond values with input. Due to the

structure of distribution tree, the pseudo code for search can be illustrated as follows:

/*

* search

*/

1. rootNodes = root

2. foreach GroupDescriptor in inputCompound

3. matchNodes = findMatchingNodes(rootNodes,GroupDescriptor)

4. validNodes = assert(matchNodes, bondSize)

5. rootNodes = validNodes

44

In pseudo code, findMatchingNodes is a function listing all the matching

group nodes which are under tree path staring from parameter rootNodes. The

function makes use of the tree structure, and its pseudo code is given as follows:

/*

* Function findMatchingNodes

*/

1. foreach rootNode in rootNodes

2. int childIndex = findFirstChildEqualOrBigger(rootNode,

 GroupDescriptor)

3. childNode = rootNode.childOf(childIndex)

4. if (childNode.value == rootNode.value)

5. increment childIndex by 1

6. foreach bondSize node of childNode

7. add bondSize node into matchNodes

8. foreach childNode of rootNode start from childIndex

9. nodes = findAllGrandChildren(childNode)

10. findMatchingNodes(nodes, GroupDescriptor)

11. return matchNodes

 In the distribution tree, for each CGDS path, the bigger group node appears

before the smaller group node. Therefore, when the functions meet those nodes that have

bigger group descriptor values, the search needs to go deep into the next level.

findMatchingNodes is designed to be a recursive function so that it can dig further

(line 9, 10 in the pseudo code).

45

 All the return bond nodes have to be asserted to confirm their validity. Function

assert takes two inputs, and its pseudo code is:

/*

* Function assert

*/

1. foreach matchNode in matchNodes

2. check assertion with its value and input bondSize

3. Success: add child node of matchNode into validNodes

4. return validNodes

 In the distribution tree, group descriptor and its bond size takes two nodes, hence,

after assertion, it is the child of the successful bond node that gets added into valid

nodes. By design, a bond node has only one child group node, and that group node will

be the root for next round search.

3.3.2 Database and distribution tree

 Distribution tree provides a representation of compounds’ CGDS distribution.

However, there is still no direct connection between the distribution tree and the data

model in the database. As we mentioned before, the physical mapping of distribution tree

into data model is not desirable. The bond between distribution tree and data model

therefore prefers logic correlation.

 Actually the search of distribution tree results in a set of tree paths, which are

equivalent to a set of CGDS values. Only those compounds in database that have CGDS

values falling into that set qualify as the potential targets for further comparison. In data

model, it is simple to add one more field that saves the CGDS for each compound. Thus,

46

if we convert output to a set of CGDS values instead of tree paths, the connection

between search result and potential targets is set.

 One straightforward way to make the conversion is to add one child node to each

leaf of current distribution tree. The added node which is now a leaf of distribution tree

saves a hashed value of CGDS represented by a tree path from the root to its parent. In

addition, besides the hashed value, the leaf node can have an integer counter which

indicates how many compounds have that CGDS value. As a result, the search can have

not only a set of hashed CGDS values but also the exact number of potential targets.

 The same hash function is applied to each compound in the database and their

values are saved and indexed. Then the retrieval of potential compounds can be easily

done by an SQL statement where the condition is restrained by the set of hash values.

3.3.3 Computing model

 Although the above data structure and method are targeted to chemical compound

search, the basic idea is more generally applicable. For many search applications, it is not

hard to make some logical assertions that may help improve the search speed. In that

case, we may design an advanced data structure which fully exploits the essence of that

logic. The isolation of logic data structure and physical data model achieves both ease of

application and flexibility of future modification. Actually, for physical data, there can be

more than one logic associated with it. In other words, physical data may behave as raw

data, many search choices can be made by associating different logics with the physical

data. The whole idea can be represented as a computing model for the application.

3.3.4 Conclusion

47

 With the aim of applying logical assertion in the preprocessing of compound

search, a distribution tree structure is presented to fully exploit the underlying logic.

Generation and search of the distribution tree are introduced and demonstrate the

effectiveness and efficiency of the structure in the application of compound search. The

idea behind the design can be used to develop a computing model which separates the

search logic and physical data.

3.4. Algorithm and its Integration with Database

Chemical database stores data that are designed to be used by search algorithm. In

general, the data are carefully tailored to be suitable for the algorithm. In that case, there

exists an association between data and algorithm, in other words, the data in the database

are algorithm dependent. It may not raise concerns if the database application always

uses one search algorithm. However, in a rapidly-growing field like bioinformatics, it is

usually expected that more advanced algorithms would come into play. Moreover, due to

the complexity of biological processes, most bioinformatics algorithms apply certain

approximations or assumptions that may not work for all the cases. As a result, it is quite

natural that there may exist more than one algorithm for one application and they would

share the same data.

3.4.1 Flexibility and upgradeability

In the design of search engine, it is preferable that the system is built with

flexibility and upgradeability, which can be roughly defined as the capability to smoothly

adopt different algorithm implementations and processing logics without changing the

underlying database data and system architecture.

48

The achievement of flexibility and upgradeability directly leads to the following

benefits:

• Upgradeability to new algorithms. It is not a surprise that more advanced and

efficient algorithms may be introduced in the near future, especially in an area not

fully developed yet. It is of best interest that the adaptation of new algorithms

requires no systematic change of data and architecture.

• Effective benchmark workstation to test different algorithms. In the

chemoinformatics and bioinformatics research area, for one topic, there usually

exist a few algorithms that differ in the focus and approximation of the underlying

problem. The algorithms may excel at different cases and the comparison among

those algorithms on one statistically significant dataset unquestionably sheds a

light on how to efficiently apply them for different targets.

• User configurable search function. As stated before, chemoinforamtics is an

application science that always involves assumptions and disparate ideas. For

chemical similarity, no well accepted definition has been established. It would be

unacceptable for a researcher to use a search function that uses an unfavorable

algorithm. On the other hand, a search engine that allows its user to configure his

desired search function would greatly improve the number of potential users for

the system.

• Heterogeneous system integration. Search algorithm needs to be implemented.

The implementations may use different languages and stay in different platforms.

49

The capability to smoothly adapt different implementations into system would be

a key to heterogeneous system integration in terms of database application.

3.4.2 Association between database data and search algorithm

Currently, the design of mainframe system has an association between data in the

database and search algorithm. Take chemical compound search engine as an example:

Chemical database stores data that are designed to be used by search algorithm. The data

is carefully tailored to be suitable for the algorithm. Therefore, a search algorithm that

demands an input of compound tree representation expects to see the data in the database

to be a tree representation. It could be enforced in the design of database data model;

which states that compound data in the model must be a specific data type. Subsequent

data processing has to ensure data consistency by bounding data with a data type. A more

advanced search algorithm which reads a different type input can not be easily plugged

into the system because the data in the database is not directly supported for the

algorithm. In a rapidly developing area like bioinformatics, it would be of researchers’

great interest and benefit if we can decouple the association between database data and

algorithm.

3.4.3 Design of Data Model

3.4.3.1 Decoupling between database data and application

In general designs, the data models reflect tight coupling between data and

application. For example, it is expected that the data of a user bank account in the

database would be used by some application knowing how to reach and read it. After

careful observation, we noticed that the application data in database is composed by two

50

parts: dynamic data and static data. The key difference between them is that dynamic

data keep status information which change from time to time and static data, on the other

hand, stays the same at any time. Static data are an application specific description

directly from the underlying entity. However, the static data may not cover all the aspects

of the underlying entity and there is no requirement that underlying entity can be fully

redrawn just by static data. On the other hand, the underlying entity can be completely

described by the data which are application independent, which we name them raw data.

The definition of both application data and raw data are given as follows.

Application

Application data

Database

Underlying
entity

Dynamic data

Static
data

Raw data

Figure 3-6 The composition of general database data

• Raw data. Raw data is a definition which stands for an immutable, non-

refined and complete description of underlying entity. When we say

immutable, we mean the data are static and does not change at any time.

51

The data are not refined for any purpose hence they are not application

and implementation dependent.

• Application data. Application data partially comes from raw data but is

designed and refined to work for the specific application. Application data

may also contain dynamic status information that does not exist in the raw

data.

Figure 3-7 The two-layer data model architecture

In the widespread database design, raw data are not generated and kept in the

database. Instead, only the application data are produced and stored in the database

targeting directly to the application, which is the primary reason that database data is

dependent on the application. Consequently, a design that aims to break data association

could start with separating the database data into two layers: raw data and application

52

data. The raw data layer is hidden from application and only talks with application data.

Application data layer works for application, its data partially comes from raw data but

are refined to work for application. In addition, application data may contain dynamic

status information that does not exist in raw data. The overall picture of this two-layer

data architecture is illustrated in the figure 3-7. The two-layer architecture system

highlights the independency of raw data. The application only talks with application data,

which is directly generated from raw data. The modification of application only affects

application data, and it could be regenerated from raw data by certain means.

3.4.3.2 Design pattern of two-layer data architecture

Two-layer data architecture provides one way to attain a separation between

application and data. The two-layer data architecture may not work very well to break the

data association in some cases. For example, the application status data (dynamic data) is

dominant and there is very little immutable raw data. However, the status data are

usually represented by numbers or strings, which are primitive data type and rarely vary

across applications. Therefore, the design can work for decoupling data association in a

relatively general manner.

The relationship between derived data and raw data can be best described to be

equal to the relationship of model and view in the MVC (Model, View, and Control)

design pattern. The derived data is an application view of the underlying raw data.

Conversely, in our design, there is no controller which behaves as a communication

conduit and messenger between two layers. The derived data comes from the immutable

raw data and for one application and the view they should not change from time to time.

53

Thus controller does not need to exist in the situation. Instead, an application-based

transformer would be launched in the beginning to convert the raw data into application-

based derived data.

The raw data can be used for different applications. Raw data may have more than

one derived data which corresponds to different applications. The generation of new

application data can be done quite easily after defining new transformer and it incurs no

systematic and architectural change of the whole data model. The basic idea can be

demonstrated by following figure.

Figure 3-8 The multi-application two-layer data architecture

It is not difficult to see that the two-layer data architecture design lays the

foundation to achieve those design goals defined in flexibility and upgradeability,

54

assuming we can generate application data from raw data based on the architecture. There

are still questions, however, of how efficiently and simply we can make the

transformation from raw data to derived data and what is the design for that.

3.4.4 Transformation from raw data to derived data

3.4.4.1 Representation of raw data

Raw data is defined to be an immutable objective data description for underlying

entity, which is application/algorithm independent. From the design point of view, the

representation of raw data should take following features:

• Unambiguous. One basic feature of raw data is its unambiguous readability for

any application. In other words, the raw data should be represented in a computer

recognizable way but platform and language independent.

• Strong Descriptive capability. The representation of raw data should be capable

of describing very complicated data

• Database support. Raw data are supposed to stay in the database system.

Therefore, the representation of raw data needs to be supported by most main

frame database management systems.

• Transformability. According to the design, the derived data is directly generated

from raw data. It would be beneficial that the representation of raw data can be

easily used to make the transformation.

The requirements demand a well-established data representation and XML

immediately calls our attention.

55

Extensible Markup Language (XML) is a simple, very flexible text format derived

from SGML (ISO 8879) [32]. Originally designed to meet the challenges of large-scale

electronic publishing, XML is also playing an increasingly important role in the exchange

of a wide variety of data on the Web and elsewhere. Since its debut, its flexibility and

efficiency to carry data has been long proved. Moreover, a great number of tools have

been developed to handle XML format.

3.4.4.2 XML transformation

Raw data, an objective description of underlying existence, can be described by

some markable language, for instance, XML. However, the XML description of raw data is

not supposed to be exposed directly to the application. Instead, the derived data needs to

be generated from XML raw data which carries application specific data structure and data.

That procedure can be done using XML transformation [26, 42].

XML transformation involves several entities and its procedure can be basically

demonstrated by following figure.

R aw
XM L
data

D erived
data (XM L

or other
form at)

XSLT
instruction

XSL engine

Figure 3-9 XML transformation using XSLT

56

XSLT is the acronym for Extensible Stylesheet Language Transformation. XML

has become a popular means to represent data. One of the fastest growing uses of XML is

within various business environments. Business applications use XML to represent data

shared within the bounds of a business application, between business applications, and

between businesses. A necessity for making use of the data housed in XML documents is

the ability to access and manipulate the data to fit the needs of the business application or

end user of the data. Extensible Stylesheet Language (XSL) provides facilities to access

and manipulate the data in XML documents.

XSL is itself an XML dialect and provides two distinct and useful mechanisms for

handling and manipulating XML documents. Many of the same constructs are shared

between the two mechanisms, but each plays a distinct role. One is concerned with

formatting data, and the other is concerned with data transformation. When XSL is used

as a formatting language, the stylesheets consist of formatting objects that prepare an

XML document for presentation.

When XSL is used for transformation, XSL takes the form of Extensible

Stylesheet Transformation (XSLT). An XSLT stylesheet is composed of template rules

that match specific portions of an XML document and allow the transformation of the XML

document content. Not only can XSLT transform an XML document from one dialect to

another, but it provides many other capabilities for extracting data from an XML

document and manipulating the data.

57

XSLT does not work alone. An XSL processor engine performs the matching

between the XML document and stylesheets. The processor performs pattern matching

between the various portions of the XML document and the XSLT stylesheet.

A XSLT stylesheet has considerable power: it can create structures of arbitrary

complexity. The power ensures us that we can generate any application based derived

data from XML raw data. The only concern is how to define the stylesheet based on the

application demands.

3.4.5 Application case: compound data in the database

In the data model design of our chemical compound database, it was observed that

the major data, compound data, comes with some features which could be described as

follows:

• The data size is huge. A compound database on average contains hundreds of

thousands of compound data.

• The compound data itself is immutable for any operation. In other words, the

compound data has no status and can not be changed.

• The connection table representation of the compound data, although simple, is

language and implementation independent.

• The application/algorithm is based on the partition passed compound data

representation.

Based on the features, the design of two-layer data architecture is as follows:

1. The raw data of the structural compound information is basically described using

canonical connection table and encoded into XML document.

58

2. The generation of derived application data can be done by constructing a template

in the XSLT which classifies original raw data into bond-group based categories.

The generated application data still takes XML format. The bond partition based

data can be efficiently described by the XML tree architecture.

3. The persistence of two layer data in the database could go two ways: (a) most

current main-frame database systems directly support XML data type. Persistence

as an XML type has advantages: Most of mainframe database management

systems like Oracle 10g have built-in XML functions which can better support

the data location and manipulation if data is explicitly saved as XML data.

Nevertheless, the XML data can be associated with an XML schema, which

provides a method for defining the structure, content and semantics of XML

documents [3]. As a result, the validity of XML data can be verified; (b) as stated

in the previous section, XML data can also be saved as a BLOB which is a standard

primitive database data type. BLOB is straightforward and efficient in terms of

data persistence. However, database is not supposed to talk directly with BLOB

data, thus the internal information of BLOB can not be searched directly by

database system and it has to be type recasted before application use.

3.5. Conclusion

In this chapter, aiming at providing database support for the search engine,

several methods are proposed for different design problems. The methods cover

the data persistence in the database, logical preprocessing and computing

architecture for integration of algorithm and data. The methods in the chapter are

59

intent to provide a solid database solution to develop the substructure search

engine for chemical compound database. However, the methods are general in a

way that the application of them in other fields is also straightforward.

60

Chapter 4 Implementation of the Search Engine

4.1. Introduction

In this chapter, the design and implementation of a workable substructure search

engine for chemical compound database are presented. The development and

implementation of the search engine are focused on testing the algorithm, architecture

and design pattern proposed in the previous chapters. It is always more convincing if

positive performance can be reached for a working search engine developed for the

proposed ideas. The working search engine is designed to handle large volume compound

data efficiently. In contrast to general search engines that use fingerprint or fragment

coding for comparison, the determination of structural relationship of search profile is

processed by on the fly calculations (based on the search algorithm). The implementation

of such a system involves a lot of work. In the development, however, we intend to

concentrate on building a viable backbone for the whole system architecture, such as:

• Computation pattern of search engine with large volume data processing.

• Chemical compound graph representation in database

• Efficient algorithm to deal with graph-based compound substructure comparison

• Integration of algorithm and database

• Logic processing in target screen and its connection with database

61

4.2. System design

4.2.1 System architecture

Figure 4-1 System architecture of search engine

The chemical compound search engine is complicated in the sense that the routine

operation involves many functions. For the flexibility and best module isolation, we

define a multi-layer system architecture as shown in figure 4-1.

The user interface is the first and only layer that is directly exposed to the end

user. It is designed to handle user input in a user friendly manner. After receiving and

validating user input, user interface layer transfers the search profile to the search

interface which is located in the middle layer -- application server. The communication

channel between user interface and search interface is alive during all the period of search

calculation (see following section for details). The user interface periodically receives the

partial result set from search interface and is responsible for rearranging the up-to-date

results and properly displaying them to the end user.

62

The application server is where the business logic comes in. The submitted search

profile as well as context information is first constructed into a logical request object

which will be recognized by all the function modules in the layer. The search engine is

designed to handle simultaneous user requests thus the session concept has to be

associated with each request. Therefore, one of the basic business logics in this layer is to

efficiently manage different requests. In the design, the session data, which is used to

distinguish different requests, is saved in a property of the request object. To speed up the

processing, the search profile in the request object is first used to look up against cache

table to see if the same search profile has been requested recently. A match of the search

profile in the cache table leads to a direct return of previous search result saved in the

table. For any new compound search request, the search profile is logically analyzed by

preprocessing module to generate the set of hash values of potential calculation targets, as

introduced in chapter 3. The set of hash values and search profile data are transferred to

the search interface of data module layer.

The database layer is the place where the computation really takes place. The

transferred set of hash values is immediately used to locate finite potential compound

data objects in the database. For each potential compound data object, the mapping

algorithm is called to determine its structural relationship with input search profile target.

The result is kept in a temporary result table, which is accessible by application layer

through the call of database access module.

63

4.2.2 Computation model design

The design of search engine is expected to have the highest accuracy of

substructure search. In the processing therefore, instead of using traditional fragment

coding or fingerprints, which introduces inaccuracy due to the absence of connectivity

information among segments, the pairwise structure calculation is undertaken between

any potential target and search profile target.

As we know, the search for structural fragments (substructure) may work under a

chemical database containing even millions of compound data. A challenging question

thus arises for our real time search engine, which is if it still can return result in a timely

manner when data size is huge. Traditionally, there are several methods that may be

deployed to work on the issue: efficient algorithm of structure comparison, preprocess

screening and distribute/parallel computing. Efficient algorithm can reduce individual

pairwise structural calculation, preprocessing screening may greatly narrow down the

potential targets, and distributed/parallel computing would speed up the whole process

time by the factor of parallelism. However, they are not general solutions: When data size

reaches a certain level, both efficient algorithm and distributed/parallel computing may

fail to guarantee a timely feedback. Although logic preprocessing like in chapter 3 can

shrink the potential targets, nevertheless, the effectiveness of logic preprocessing heavily

depends on the input. A trivial input may fail logic preprocessing in its performance of

screening.

64

4.2.2.1 Interactivity

The problem comes from the fact that a human being (end user) gets involved in

the search activity. A round of search generally starts with a best profile of structural

fragment inputted from the end user, the profile is then made against database through

search engine and it is supposed that a predefined set of targets will return which are

closest to the input. Basically speaking, the search rarely stops at one round of

communication. The launcher of the search usually refines or redesigns his/her structural

fragment based on current search feedback and starts the next round of search. As

multiple round communications are expected between search engine and participating

human being in a timely manner, the search activity is full of interactivity.

 Interactivity is very important in chemical compound search. Due to the

ambiguous nature of similarity definition, the human interpretation is inevitably involved.

For the same search result, different users may vary by their determinations because they

have different focus or expectations for the result. A search engine has to be based on

certain rank algorithm to index and rank its output. However in reality, there is no rank

algorithm which is agreed by all people. Although theoretically imperfect, interactivity

makes it practicable: People are free to choose result no matter what rank position search

engine has for it. The basic methodology was deployed in many search engines such as

Google.

 Interactivity is challenging if the search is against a huge data set. Human

interactivity demands that the result be returned within a limited time. When the size of

65

data set reaches certain level, no matter what advanced algorithm is deployed under the

search engine, the calculation time may be beyond that limit.

4.2.2.2 Nonatomic result return

The dilemma of limited time and possible lengthy calculation comes from one

standpoint: The result has to be returned as a unit. The standpoint is based on one

assumption that the result is perceptible only when it returns as a whole. It does make

sense in certain applications, such as a calculation that involves several steps, where each

step generates only an intermediate result. However, in the application of chemical

compound search, the result contains a set of hit targets and each target in itself is final

and independent. Although there is some ranking algorithm which tries to sort targets, as

we stated before, the user is the final judger and ranking is only for reference purposes. In

other words, the standpoint of atomic return is not vital in this case.

 Nonatomic return, which pops partial result back to the user periodically, can

resolve the imbalance of limited waiting time and oversize data set. With the use of

efficient algorithm, there is a guarantee that a sufficient part of the result can be

generated within a time limit. The sufficient part is based on the speed of human

perception. A good analogy of film work can be used to explain the concept: anything

beyond 30 frames per second may not make a film more alive, 30 frames per second is

enough for human being to perceive the animation.

 The traditional search is a blocking operation which expects an atomic return. For

search that does not require atomic return, asynchronous communication can be

deployed. After a search command is transferred, the client side does not wait till result

66

has been returned. Instead, the client side hooks a callback mechanism with server side.

The callback mechanism will be invoked every time if there is a return available.

 There is something beyond classical asynchronous communication. In classical

asynchronous communication, although the operation is nonblocking, the communication

essentially is one round. For our compound search engine application, nonatomic return

is likely to have more than one callback. It is achievable though, with add-on self defined

protocol, callback function is deployed and called to tell the stage of return and update

the client side based on the data and current stage.

4.2.2.3 Interactivity and its application in web service

Web based search interface provides the broadest access to the end user without

tedious installation. Web access gains more and more popularity in today’s computing

service. A search interface based on web access provides large range of accessibility, and

it is more of interest to apply interactivity on web-based search interface. Nevertheless, in

essence, web application is nothing but a client-server computing model. HTTP, which is

the underlying communication protocol for web application, takes the blocking operation.

Due to the problem mentioned above, most of the current chemical compound search

engines which rely on pairwise structural calculation only provide an e-mail based web

interface, which totally eliminates the interactivity of the search activity.

 A nonatomic return communication can be applied to web application as well.

With the help of some existing techniques, traditional web communication can be

converted to be asynchronous. It provides a solid ground for applying an interactive web-

base interface for chemical compound search.

67

 As discussed before, classical web application is nothing but a client-server model

and that model enforces a synchronized request and response. That model is basically

considered to be a thin client model because most of the calculation does take place in the

server side, while client side only works as a simple user input interface. The computing

brings a heavy load to the server side when requested volume increases and is considered

to be not well scalable. To solve that, recently some new techniques like AJAX

(Asynchronized Javascript and XML) are introduced to accomplish a thick web

client by involving more calculation in client side. The concept practically increases

interactivity by reason of some logic being done in client side, and due to the

asynchronous communication, it provides a solid foundation for the application of

nonatomic return methodology mentioned previously. However, though the

communication takes non-blocking mode, essentially the communication requires a full

result return, which is not in accordance with the design of nonatomic return.

 In the design, something can be added to make the communication more flexible.

There might be two ways to add that functionality:

• By repeat client requests

After receiving a request, server side commits to having a return in a predefined

time span along with the current progress ratio of result even if the result is not fully

finished. Client side keeps launching another round of request with same ID if the

progress ratio has not reached full. Server side can easily identify if there is a new

search request just by looking up the ID in local table. The request with ID in table

leads to an updated return with new generated result.

68

• By event status

AJAX technique uses XMLHttpRequest object, a W3C specification under draft.

Although not formally documented, The XMLHttpRequest object is

implemented today, in some form, by many popular Web browsers. The current

implementation has an attribute of onreadystatechange of type Function, An

attribute that represents a function that MUST be invoked when readyState

changes value. The function MAY be invoked multiple times when readyState

is 3 (Receiving). If we define any partial return to be associated with an invocation

of onreadystatechange with readyState to be 3, a client function that

targets that state knows exactly that this is a partial result and is coded to handle it.

4.2.2.4 Parallel/cluster computing

The operation of compound search involves repetitive pairwise structural

calculation. For each pair, the calculation is complete and independent of the others and it

provides a solid base to apply parallel/distributed computing.

The key point for parallel/cluster computing for compound search is how to split

data sets across the available computing resources evenly so that each resource would

have the same load for any task. Assume there are ten computers and a task involves 100

structural pairwise calculations, the best hope is that each computer takes 10 calculations

thus all the computers would finish their work in almost the same time.

Given a data set and assume any one of the set would be calculated for any input

task, the distribution of task would be straightforward based on the partition of data set.

The data set could be partitioned into n parts where n is the total amount of computer

69

resources available. Each computer is in charge of the calculation of one part of the data

set for input task.

However, for compound search engine, not all the compound data would be

calculated after the screening operation. Only a small percentage of potential compound

targets would be calculated against the input, as a result, the distribution of potential

targets is not fixed with data set and varies case by case, which makes the task allocation

complicated for parallel/distributed computing.

Figure 4-2 Normal distribution of compound data in terms of atom size

In the design, experiment analysis was adopted to have a roughly even

distribution. As we know each compound data is composed by atom and bond, if we

partition data set based on the size range of atom and bond, we would get non-overlaping

sets of compound data with different size range. Further data analysis found that the

whole data set is an approximately normal distribution in terms of size range (shown in

figure). The compound data cluster heavily around atom size 40 to 100. The observation

70

tells us that the partition of data set should reflect that distribution. Hence basically, the

size range interval jumps quickly at two sides and proceeds slowly in the gathering range

of 40 to 100.

Orion cluster is a high performance parallel cluster. In our lab, there is a 12 node

Orion cluster and it is designed to host the application server. In 2.4, a distribution tree

concept is presented to handle the preprocess logic. Generally, the distribution tree

reflects the whole compound data in database but the concept can be applied to a subset

as well. In the design, the head node of Orion computer is working as the global

organizer of the service in this layer. Each of the rest of the 11 work nodes in cluster

holds a unique distribution tree which represents a subset of compound data in the

database. The individual distribution tree has no overlap with any other and the union of

all distribution trees fully reflects the entire compound data in database. The task of

search will be broadcast to all work nodes and be processed parallel. Each work node has

access to database and results will be returned to head node.

 The communication between head node and work nodes is multiple-round based

and based on straightforward socket programming. In head node, a session id will be

created to associate with each search request, and if there is any change regarding the

search, the head node will notify all work nodes. To speed up the processing, a cache

lookup table may be set up for each work node. A hit in the lookup table leads to a direct

result, which is a significant improvement in terms of speed.

 In this design, we propose a model which is believed to accomplish some

interactivity in the compound search. The real interactivity is determined by the

71

perception of the human and may vary from person to person. While the real

implementation has to be fixed in hardware architecture, there is no doubt the design

concept can be extended. Parallel/cluster computing can work out as an adjustment factor

to reach the design goal if the performance is not favorable.

4.3. Implementation

4.3.1 Data processing

4.3.1.1 Data source and preprocessing

The raw structure data that were used to build the chemical compound database

came from NCI open source (http://cactus.nci.nih.gov/ncidb2/download.html). There are

250,251 2D structures calculated with CACTUS. (Attention: Stereochemistry is assigned

by CACTUS according to default rules due to lack of stereochemical information in the

original NCI data. The SMILES string and the CAS RN (where available) are also

included for each structure).

 NCI offers a downloadable file that is uncompressed to a SDF file of about 982

MB, which contains all the compounds. For the convenience for further processing, we

have developed a Java program (DeprocessPro) to decompose all the compounds into

individual molecule files.

♦File name and primary key

The decomposition requires giving a name for each compound file, and that name

should work as a primary key in the database to identify each compound. Although for

any publicly deposited compound, a unique CAS registry name was already given.

However some compounds are proprietary and do not have a CAS registry name. In

72

NCI system, it defines a unique 6-digit NCI internal number for each compound and for

any compound with no public CAS registry, a dummy 999-99-9 number is used for its

CAS registry name. In our design, the file name and primary key of compound comes

from the combination of CAS registry name and NCI internal number: if the CAS

registry name is available, that name will be used as the key; else the file name is given

by a leading 999-99-9 and a following parenthesis which has the NCI number inside.

♦Data arrangement (compound tree)

The decomposed molecule files are arranged in file system in such a way to be

compatible with their chemical features and thus convenient for the following

processing.

• All the molecule files would be put together under one destination folder and

that folder is named as root folder.

• The file path between the mol file and the root folder reflects one of its basic

chemical characteristics: its atom size and bond size. Each molecule file is

under two-folder deep of the root destination folder. The first level folder is

named by the number of atom size and the second level folder is followed by

having its name from the bond size.

• The compounds with the same atom and bond size would stay in the same

folder and the compounds with the same atom size would have same parent

folder. The whole arrangement of mol files in the file system constructs a

three-layer compound tree.

73

• The construction of the file system structure was done on the fly by the

DeprocessPro during the decomposition procedure.

4.3.1.2 Data representation for chemical compound

 Mol file is just an ASCII text file. For convenience, a logic data representation

which fully records structural information but is easy to process for the algorithm is used

to wrap the mol file. In the design of the compound data representation, both the partition

concept introduced in chapter two and the object-orientation idea are deployed. From the

object’s point of view, a chemical compound consists of a set of partitions of bond group,

each partition has a set of the bonds with the same type, and a bond is constructed by two

atoms with a connection value. Thus an object hierarchy for the chemical compound can

be drawn (Fig. 4.3). For each object in the figure, a corresponding class is defined and

they are Atom, Bond, Partition and Compound. In the Compound class, a parser

method is implemented to parse a molecule file into a compound object.

Chemical Compound

Bond Group Partition Bond Group Partition Bond Group Partition...

Bond Bond Bond...

Atom Atom

Figure 4-3 Object hierarchy of chemical compound data representation

74

4.3.2 Implementation of algorithm

 The Java language was chosen to develop the algorithm due to its powerful

language capability and wide acceptability. The algorithm proposed in chapter two is

used for pairwise compound comparison. To separate the algorithm and operating data,

an abstract class Mapping was first defined. The Mapping class defines two basic

abstract member functions: initialize and process, which subclass of the

Mapping has to implement. The Mapping class takes two compound inputs. The

inputs are defined as an interface type Compound, which is the abstract interface of the

compound data representation. The Mapping and Compound classes specify the basic

prototype of the algorithm and the algorithm implementation takes the subclass format of

these two. In our case, SubMapping and PartitionCompound are the two classes

that are designed to implement the partition algorithm and their whole relationship is

illustrated in figure 4-4. The design provides great flexibility in a manner that several of

mapping algorithms could be developed in the same way and the switching of the

algorithms in the future would not incur too much hassle.

Figure 4-4 The relationship among abstract classes and implementation classes

75

 In the SubMapping class, the implementation of the partition-based algorithm,

the constructor of the class takes two input compounds defined as

ParitionCompound and the steps described in the algorithm are designed to be its

private member functions which are called by either of two public functions:

initialize or process. Since the mapping forest is introduced to simulate the

mapping procedure, a corresponding class MappingForest is also defined to be

responsible for that procedure. MappingForest has field definitions such as active

nodes. The member functions bondLocate and bondMapping are used to implement

the activities of forest generation. The MappingForest object is cloneable when

ambiguity is reached and a new mapping tree is necessary. SubMapping class keeps all

the valid MappingForests in a list and if after the processing the size of the list is not

equal to zero, it signifies that at least one substructure mapping has been established

between two input compounds. The detailed mapping can be further obtained by

querying MappingForest.

4.3.3 Implementation of screening

4.3.3.1 Definition of the distribution tree

In the Java language, tree structure is a fully implemented data structure. The

basic unit of a tree is the tree node, and Java has a super interface TreeNode for that.

TreeNode has a subinterface MutableTreeNode which defines the tree node that

can be changed. A general-purpose class DefaultMutableTreeNode is provided by

Java to operate on tree structure. For a tree structure, after we instance each tree node into

DefaultMutableTreeNode, the tree can be basically represented by a

76

DefaultMutableTreeNode object which stands for the root of the tree. Given that

root we can explore the whole tree by calling the built-in functions implemented in

DefaultMutableTreeNode class.

As described in section 3.3, a distribution tree fully represents the compounds

distribution based on their CGDS. In essence, the distribution tree is still a tree structure,

and in the distribution tree, each non-leaf tree node keeps a value which is a part of the

CGDS strings. The leaf node of the distribution tree has a hash value associated with

database, and that hash value is uniquely generated between the root and the leaf (A

CGDS string).

In the design, we have a class definition for the tree node in distribution tree,

DistributionTreeNode. The DistributionTreeNode extends

DefaultMutableTreeNode class hence inherits all its functions. The

DistributionTreeNode converts its part of CGDS string into a numeric value and

saves that value in a private field. The basic DistributionTreeNode is used to

wrap all distribution tree nodes except leaf nodes, where we have a dedicated class

LeafNode for that. LeafNode is a subclass of DistributionTreeNode, it is

designed to be associated with the backend database by a common CGDS hash value.

Beside that, the leaf node also records the total number of compounds that share this

CGDS value. Therefore, after the search of DistributionTree, the total number of

potential targets could be easily calculated just by summing up that number in all

matching leaf nodes.

77

4.3.3.2 Partition of the distribution tree

 The distribution tree is a logical abstraction of the CGDS distribution for a

collection of compounds. Given a large amount of compound data, we could have just

one distribution tree for all the data. However, it would be of benefit if more granular

distribution trees are generated.

 In the case of our application, there are more than 250000 compounds. It would

be a huge tree if all data are put into one tree. The direct impact of that design is the

requirement of large memory and slow processing speed. The distribution tree has to be

loaded into memory before any search can be carried out, thus the host of the distribution

tree needs to have extra memory resources. In addition, the search against that tree would

be time consuming due to its large tree size.

 The partition of compound data into different distribution tree is preferable.

Actually, CGDS is one of the logical steps in preprocessing we can apply to screen the

potential targets. On the other hand, as we introduced in section 3.3, other logics such as

screening based on atom size and bond size can also be used to narrow down the targets.

The simple logic comes from the fact that a compound may contain another compound as

a substructure stands only if both the atom size and the bond size of the first compound is

at least the same as the second one. Consequently, if we partition the compound data into

different distribution trees based on their atom or bond sizes, after determining the size of

the input compound, only those qualified distribution trees need to be searched.

Moreover, the concept of partition is fully compatible with the distributed/cluster

78

computing. More granular partition of distribution tree leads to more flexibility of task

allocation if more than one computing resources are available.

 In the data processing section of this chapter, we described that individual

compound data is decomposed into file system based on its atom size and bond size and

all the folders and files thus generated form a compound tree in the file system. Given

that as an input, the partition of the distribution tree can be easily made as long as some

rules are specified. For example, we can define a fixed range such as an interval of 20

and use that as a splitting range for the partition of distribution tree. As a result, the

compounds with atom size range of 1 to 20 are partitioned into the first distribution tree,

21 to 40 into the second distribution tree, and so on. The partition operation is illustrated

in the following figure.

Figure 4-5 The partition of compound data into different distribution trees

79

 For the best performance, each distribution tree should encompass roughly even

part of the whole data. According to the data analysis of this chapter, the compound data

appears a normal distribution in terms of the containing atom size. Therefore, in the

implementation, the partition does not simply follow a fixed range.

4.3.3.3 Generation and persistence of the distribution tree

The generation of the distribution tree is straightforward once the set of

compound files are defined. The procedure starts with an instantiation of a root node for

the new distribution tree, and then the processing of an individual mol file would become

to add a CGDS based tree path if it does not exist before. The pesuocode for the

generation of the distribution tree object is given as follows:

/*

* Function DTGeneration

* Generation of the distribution tree for a set of compound files

*/

1. Instantiate a new tree node as the root node

2. foreach compound file

3. read and wrap it into a Compound object

4. Declare a variable node root and assign the root node to the

variable

5. Sort the groups in the Compound by the descending order of

their numeric values

6. foreach group in the Compound

7. if root does not contain the group as a child

8. Create a child tree node based on the group

80

9. assign the new child tree node to the root variable

10. assign that child node to the root variable

11. increment 1 to the total molecule count in the leaf node

12. return the root node of the distribution tree

The distribution tree object needs to persistent so that it can be reached by the

application server afterward. Object serialization is widely supported by most of

advanced languages but the internal implementation mechanism varies. The natural way

of object serialization suffers some problems. 1) The serialization of one language can

not be parsed by the other language and the stream of serialization is not even designed to

be read directly by a person, which is the case when you open up the serialization file of a

Java object. 2) Even in one language, if there are some changes in the class

implementation after you serialize the class object, you may fail to reach it (version issue).

The problems come from the fact that traditionally, the persistence of graphs of

objects was made by an approach called Marshalling, which basically records all states

in an object graph, including non-public states. The simplest schema taking the approach

requires the inclusion of all the classes that define the objects. There is a practical

alternative approach that is officially called archiving. The approach records only all

states that can be reconstituted using the public APIs of the objects in the graph. The

second approach cannot produce as faithful a copy of the original objects as the first but

can store the state of the graph in such a way that any API-compatible implementation of

the classes involved will be sufficient to reconstitute it. Since APIs are so much more

stable than their private implementations, this single step virtually solves the versioning

81

issues for most practical purposes. In addition, compared with the first approach, the size

of the file generated by the second approach can be reduced dramatically.

The second approach can also be used to generate serialization using some

standard format, such as XML document. In Java, since 1.4, XMLEncoder, an

alternative class to the traditional ObjectOutputStream, was provided. The

XMLEncoder class is exclusively designed for the purpose of archiving graphs of

JavaBeans as textual representations of their public properties. Like Java source files,

documents written this way have a natural immunity to changes in the implementations

of the classes involved. The XMLEncoder class provides a default denotation for

JavaBeans in which they are represented as XML documents complying with version 1.0

of the XML specification and the UTF-8 character encoding of the Unicode/ISO 10646

character set. The XML documents produced by the XMLEncoder class are:

• Portable and version resilient: they have no dependency on the private

implementation of any class and so, like Java source files, they may be

exchanged between environments which may have different versions of some

of the classes and between VMs from different vendors.

• Structurally compact: The XMLEncoder class uses a redundancy elimination

algorithm internally so that the default values of a Bean’s properties are not

written to the stream.

• Fault tolerant: Non-structural errors in the file, caused either by damage to the

file or by API changes made to classes in an archive remain localized so that a

82

reader can report the error and continue to load the parts of the document

which were not affected by the error.

In our design, the distribution tree is represented by connected

DistributionTreeNodes. Each node contains several public properties that are

critical to construct the distribution tree and those properties can be output into a XML

document by XMLEncoder. A sample DistributionTree XML file is shown in

the figure 4-6. Given that XML output, we can fully reconstruct the original

DistributionTree Object by using XMLDecoder, the class which handles the

deserialization procedure.

Figure 4-6 A sample distribution tree XML file

83

4.3.3.4 Search of the distribution tree and database

 As indicated in system architecture, distribution trees are supposed to stay in the

application server and are used in the process of screening. After receiving the search

request from the user, the application server can determine the distribution trees to search

based on the search profile. Those trees will be loaded if they are not in memory and then

the search profile will be searched against the trees to locate potential set of hash values.

The application server will generate SQL query based on retrieved set of hash values and

that query will be submitted through data access module for the database operation. In

backend database part, the potential compounds will be easily pinpointed as their hash

values are already determined.

4.3.4 Implementation of database

In the design, we chose Oracle 9i as our backend database management system.

Oracle database system has long been proven its high performance and remarkable

stability in terms of data management. In addition, starting from oracle 8, Oracle system

has built-in support of Java language, and for our application, the implementation was

primarily developed using Java language. As a result, the integration of application with

database would be much more convenient and natural if Oracle database is chosen.

4.3.4.1 Data representation for chemical compound in Oracle database

Compound data in the database is encoded by the class representation introduced

in section 4.3.1.2. The representation involves a graph of hierarchical classes for the

compound definition and they are all saved into Oracle database as a Java class type.

84

There is a preprocessing step which parses all the compound files and save data

into database. During the process, Compound object would be first instantiated from

compound file, and then the compound object is saved into the database. The object

persistence adapts the archiving approach and takes XML format as output. The

generated XML document is saved as a BLOB type in the database.

The point of taking archiving approach instead of traditional object serialization

method is that the compound data in the database would be comparably stable even if we

later change the implementation of representation classes. The update of the classes only

needs to reload the class code into the database system by calling Oracle support utility,

the whole compound data would not be affected provided that the new code does not

change the public interface, which is normally the case for the software development.

The compound data stays in the database and so do the operations on them. In the

design, the operations of the compound data, like query, are exposed to end users by

stored procedures. Those stored procedures are actually Java stored procedures, and they

act as a normal SQL stored procedure from outside view. However, owing to their Java

essence, they can handle compound object in its natural way. As a result, the operation on

compound data can be developed by using powerful Java language. Additionally, because

both Java stored procedures and compound data, stay and execute in the database, there is

no overhead of network communication in contrast to those applications that require the

logic processing in the client side.

85

4.3.4.2 Integration of search function with Oracle database

 The core part of the search function is to determine the two compounds’

substructure relationship and as introduced in chapter two, it is accomplished by the

search algorithm. The search algorithm would be called many times by feeding different

pairs of compounds during the whole search procedure and consequently, it is preferred

that the implementation of algorithm is located close to the compound data, in other

words, reside in the database. Same as compound data, the algorithm implementation,

SubMapping class, was developed by Java language. On account of that, it was directly

saved into the Oracle database as a Java class for the best performance.

 On top of the algorithm and compound data, control logic is required to

manipulate the whole search process. That is why another Java class, Search was

developed. Search works as both the control headquarters for the search function and the

data access interface for the end user. As indicated before, search function interface was

exposed as Java stored procedures and they are actually public member functions of the

Search class. The object instance of Search class is instantiated once Oracle database

system was loaded and it is always in the Oracle system memory waiting for the request.

The request call from application server invokes a “search activity” of the Search object.

The “search activity” is logical abstraction of the search procedure for one specified

request and was threaded implemented. Basically, the “search activity” takes three steps

to handle one request:

1) Locate potential compounds. The set of hash values transferred from application

server is used to position the potential targets in the database. This step takes

86

little time and the result, total number of potential targets found in the database,

as well as the identification number for this activity, is returned to application

server as the immediate output.

2) Repetitive calculation. The second step involves recurring pairwise calculation

between search profile and each individual potential target. In the beginning of

this step, a temporary table, which saves the final matched targets, is created.

For each round of calculation, if submapping can be established, the matched

compound information is saved into that table. The table has a special field used

to indicate if the table is final or still under processing.

3) Wait and self-destruct. After the second step, the search activity is idle for a

while if no terminate instruction is received. It will release all the resources and

itself anyway, after a predefined span of time, even if these is no instruction for

that.

The communication between application server and Search object is one way. The

Search object will not inform application server of current progress of search activity.

Instead, another dedicated Java stored procedure is exposed. By passing search activity

identification number as parameter, the application server can retrieve the up-to-data

information of the result table for that activity. Application server, at any time, can also

terminate the server activity by calling the same stored procedure with both identification

number and a stop flag set to be true. The whole process is illustrated in the figure 4.6.

87

Figure 4-7 Design of search engine

4.3.5 Implementation of web interface

As to the user interface, there is no restriction on how it is implemented. However,

web applications provide the broadest access to the end user without tedious installation.

In the design, we have implemented a web-based search user interface.

4.3.5.1 Molecular editor

The user interface is designed to provide a way for a user to input and a user

friendly molecular editor should be provided. In our web application, JME molecular

editor [16], by the courtesy of Dr. Peter Ertl, was deployed to present a web-based

graphic user interface for users to draw their input compounds. JME Molecular Editor is

a Java applet which allows to draw/edit molecules and reactions and to depict molecules

directly within an HTML page. Editor can generate Daylight SMILES or MDL mol file

88

of created structures, which is the supported input for our implemented compound object.

(The web page with molecular edit Java applet loaded is shown in figure 4-8)

4.3.5.2 Design of web interface application

The web interface application was developed under J2EE architecture. The

implementation involves JSP, Java Servlet, JSTL, Structs Framework, Javabeans, JDBC

and AJAX, and it strictly follows the MVC (Model view and control) design pattern.

The front end web page input.jsp is dedicated for user input. It is integrated

with molecular editor applet, and JavaScript is used to interact with applet when input is

drawn. The input molecule would be retrieved as a string stream of MDL mol format and

submitted as a property in ActionForm, a class defined in Structs Framework.

.

Figure 4-8 A snapshot of web page with molecular editor applet loaded

89

The input is transferred to a handling Java servlet, which basically handle

different ActionForm by calling different Action class objects, where the Action

class is also a concept in Structs Framework. In our design, the business logic in

application layer was developed into a Search JavaBean component, our customized

Action class object only needs to launch search method exposed by the Search

component, and the result would be given as a SearchResult JavaBean component.

An ActionFoward class object would then be launched, which defines output view to

the end user.

Figure 4-9 A snapshot of search result web page

90

The final output view is displayed in a JSP page (figure 4-9). It basically lists the

current found search targets by exploring SearchResult component using JSTL. Due

to the nonatomic return nature for our search activity, it is designed to refresh

periodically until the result is final.

4.4. Experimental result and performance

The efficiency of search engines involves several factors, and they are all tested in

terms of accuracy or performance.

• Algorithm. The accuracy of implementation was test by feeding a collection of

pairwise compounds for substructure mapping. The implementation correctly

identified all mapping relationships.

• Screening. General speaking, the performance of screening varies case by case

with different input search profiles. In the test, a set of non-trivial search profiles

were employed against screening operation. On average, the screen logic we use

could filter out 85%~90% unqualified compounds. It serves much better if the

search profile is kind of special in terms of containing atom or containing bond.

• Nonatomic return. We test the calculation model by searching against a

compound dataset featuring total atom size between 100 to 200 in one personal

computer. It takes seconds to report the total potentials targets and in every 15

seconds, the result could be refreshed to reflect the up-to-data progress. When

dealing with more data, the whole processing may need more time if handled in

one computer, but, as we stated before, the design is supposed to assign the task

91

evenly into different nodes in a distributed/parallel computing environment.

Hence, processing speed is still under control.

92

Chapter 5 Conclusions and Future Works

In the dissertation, a design and implementation of a substructure search engine

for chemical compound was presented. The search for structural fragment (substructure)

of compounds is very important in medicinal chemistry, QSAR, spectroscopy, and many

other fields. Due to the complexity nature of structure comparison and large amount of

compound data which is usually involved in search calculation, current search engines

mainly works out the speed by applying fingerprint comparison instead of pairwise

structure calculation. By defining and encoding chemical structure information into

fingerprint, which generally takes primitive computer data representation, the search

calculation can be done in a remarkably fast way. However, the definition of fingerprint

is subjective and some structure information, such as connectivity between different

segments, is not existed in the fingerprint. As a result, inaccuracy is introduced as a

tradeoff. However it must be remembered that the experimental use of these compounds

in a real chemistry lab may take months or even years so it is important not to be overly

aggressive at trimming processing speed at the cost of missing critical leads. It is more

important to find good lead compounds that it is to reduce the time of the query from a

month to a second.

Taking aim at providing a more accurate search engine with reasonable speed, in

the dissertation, a total new design solution was provided. The design starts with a new

look at graph isomorphism problem of compound substructure mapping, although

essential a NP problem, chemical compound graph has some features that may not exist

93

in general case and those features can be used to simplify the calculation. The

observation of the problem ends with a new partition based algorithm and the

corresponding representation of compound data. The new algorithm is logically simple

and proved to be effective and efficient in determining pairwise compound structure

mapping. Secondly, the design tries to work on the problem under a database view. By

proposing a method to save any type of object instances into database, the design

provides the way to persist our partition based data representation into the compound

database. In addition, the design introduces a relationship logic based on the partition

concept, which can be used to apply screening for compound search in the database. The

application of the logic for screen processing is under a new proposed computing model,

which totally eliminates the coupling between screening logic and data model in the

database. In this part, a design how to isolate the data, the algorithm and the

implementation is also discussed. To verify the design, in the third part, we implemented

a search engine based on the proposed methods. The implementation touches a wide

range of practical problems. It first proposes a nonatomic return concept for compound

search. Based on that, a calculation model can be developed to handle both accuracy and

speed. The implementation takes multi-layer system architecture and was developed

mainly in Java architecture. The detailed implementation introduction of each major part

of the system is given in this part. The test of developed search engine demonstrates its

effectiveness in the application of compound search.

As we stated in the very beginning, a search engine for chemical compound

database is very important in a variety of fields. The design and implementation would

94

not be complete until more knowledge can be applied and more tests can be taken. The

current dissertation provides a basic solution to the problem and it is not mature in many

ways. However, it leaves a solid base and flexible architure onto which further efforts can

be applied.

95

Bibliography

1. Chemical Graph Theory. CRC Press, Boca Raton, 1983.

2. Chemoinformatics. John Wiley & Sons, Germany, 2003.

3. XML Schema.

4. Alexander Barmann, H.M., Dirk Walkowiak Substructure searching on very large
files by using mutliple storage techniques. Journal of Chem. Info. Comput. Sci.,
33. 539-541.

5. Allinger, N.L. Conformational Analysis 130. MM2. A Hydrocarbon Force Field
Utilizing V1 and V2 Torsional Terms. . J. Am. Chem. Soc., 99. 8127-8134.

6. Allinger, N.L., Yuh, Y.H. and Lii, J.-H. Molecular Mechanics. The MM3 Force
Field for Hydrocarbons. 1. J. Am. Chem. Soc., 111. 8551-8565.

7. An, J., Nakama, T., Kubota, Y. and Sarai, A. 3DinSight: an integrated relational
database and search tool for the structure, function and properties of
biomolecules. Bioinformatics, 14 (2). 188-195.

8. Barnard, J.M. Substructure searching methods: Old and new. J. Chem. Inf.
Comput. Sci., 33. 532-538.

9. Barreca, M.L., Rao, A., De Luca, L., Zappala, M., Gurnari, C., Monforte, P., De
Clercq, E., Van Maele, B., Debyser, Z., Witvrouw, M., Briggs, J.M. and Chimirri,
A. Efficient 3D Database Screening for Novel HIV-1 IN Inhibitors. J. Chem. Inf.
Comput. Sci., 44. 1450-1455.

10. Bayada, D.M., Hamersma, H. and van Geerestein, V.J. Molecular Diversity and
Representativity in Chemical Databases. J. Chem. Inf. Comput. Sci., 39. 1-10.

11. Bradley D. Christie, B.A.L., James G. Nourse Structure searching in chemical
database by direct lookup methods. Journal of inf. comput. sci., 33. 545-547.

12. Camoglu, O., Kahveci, T. and Singh, A.K. Towards index-based similarity search
for protein structure databases. Proc. IEEE Comput. Soc. Bioinform. Conf., 2.
148-158.

13. Can, T. and Wang, Y.F. Protein structure alignment and fast similarity search
using local shape signatures. J. Bioinform. Comput. Biol., 2 (1). 215-239.

14. Cramer, R.D., Redl, G. and Berkoff, C.E. Substructural analysis. Novel approach
to the problem of drug design. J. Med. Chem., 17. 533-535.

96

15. Dury, L., Latour, T., Leherte, L., Barberis, F. and Vercauteren, D.P. A New
Graph Descriptor for Molecules Containing Cycles. Application as Screening
Criterion for Searching Molecular Structures within Large Databases of Organic
Compounds. J. Chem. Inf. Comput. Sci., 41. 1437-1445.

16. http://www.molinspiration.com/jme/.

17. J. Gasteiger, T.E. Chemoinformatics. (Weinheim, WEILEY-VCH Publisher).

18. J. Xu, A.H. Review: Chemoinformatics and drug discovery. Molecules, 7. 566-
600.

19. Jenwitheesuk, E. and Samudrala, R. Prediction of HIV-1 protease inhibitor
resistance using a protein-inhibitor flexible docking approach. Antivir. Ther., 10
(1). 157-166.

20. Jenwitheesuk, E. and Samudrala, R. Virtual screening of HIV-1 protease
inhibitors against human cytomegalovirus protease using docking and molecular
dynamics. Aids, 19 (5). 529-531.

21. John W. Raymond, E.J.G., Peter Willett RASCAL: calculation of graph similarity
using maximum common edge subgraphs. British computer society, 45. 631-644.

22. Jonathan Chen, S.J.S., Yimeng Dou, Jocelyne Bruand, Pierre Baldi ChemDB: a
public database of small molecules and related chemoinformatics resources.
Bioinformatics, 21. 4133-4139.

23. L. P. Cordella, P.F., C. Sansone, M. Vento Performance evalutation of the VF
graph matching algorithm. Proc. of the 10th ICIAP, IEEE computer socieity
press. 1172-1177.

24. Leach, A.R. and Gillet, V.J. An Introduction to Chemoinformatics. Springer,
Netherlands, 2003.

25. Lynch, M.F. Introduction of computers in chemical structure information systems,
or what is not recorded in the annals. American society for information science
and technology. 137-148.

26. Mangano, S. XSLT Cookbook, Second Edition (Cookbooks (O'Reilly))
[ILLUSTRATED]

27. McKay, B.D. Practical graph ismorphism. Congressus Numerantium, 30. 45-87.

28. Monev, V. Introduction to Similarity Searching in Chemistry. Match-
Communications in Mathematical and in Computer Chemistry 51. 7-38.

97

29. NCI NCI. National Cancer Institute.

30. P. Volarath, H.W., H. Fu, R. Harrison Knowledge-based algorithms for chemical
structure and property analysis. EMBS 26th IEEE EMBS Annual International
Conference, San Francisco, CA 2004.

31. Price, J. JDBC programming in Oracle 9i. (McGraw-Hill Publisher, Berkeley,
CA).

32. Ray, E.T. Learning XML, Second Edition [ILLUSTRATED].

33. Ray, L.C. and Kirsch, R.A. Finding Chemical Records by Digital Computers.
Science, 126. 814-819.

34. Read, R.C. and Coreneil, D.G. The Graph Isomorphism Disease. Journal of
Graph Theory 1. 339-363.

35. Reddy, M.R., Viswanadhan, V.N. and Weinstein, J.N. Relative differences in the
binding free energies of human immunodeficiency virus 1 protease inhibitors: a
thermodynamic cycle-perturbation approach. Proc. Natl. Acad. Sci. USA, 88 (22).
10287-10291.

36. Reynolds, X.C.a.C.H. Performance of similarity measures in 2D fragment-based
similarity searching: comparison of structural descriptors and similarity
coefficients. Journal of Chem. Info. Comput. Sci., 42. 1407-1414.

37. Robert D. Brown, G.J., Peter Willett Matching two-dimensional chemical graphs
using genetic algorithm. Journal of inf. comput. sci., 34. 63-70.

38. Robert D. Brown, G.M.D., Gareth Jones, Peter Willett Hyperstructure model for
chemical structure handling: techniques for substructure searching. Journal of
Chem. Info. Comput. Sci., 34. 47-53.

39. Salim, N., Holliday, J. and Willett, P. Combination of Fingerprint-Based
Similarity Coefficients Using Data Fusion. J. Chem. Inf. Comput. Sci., 43. 435-
442.

40. Savle, R. Improved SMILES substructure searching.

41. Sergey V. Trepalin, A.V.S., Konstantin V. Balakin, Anatoly F. Nasonov, Stanley
A. Lang, Andrey A. Ivashchenko, Nikolay P. Savchuk Advanced exact structure
searching in large databases of chemical compounds. Journal of Chem. Info.
Comput. Sci., 2003. 852-860.

42. Tennison, J. Beginning XSLT 2.0: From Novice to Professional (Beginning: from
Novice to Professional)

98

43. Tie, Y., Boross, P.I., Wang, Y.F., Gaddis, L., Liu, F., Chen, X., Tozser, J.,
Harrison, R.W. and Weber, I.T. Molecular basis for substrate recognition and
drug resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1
protease mutants with substrate analogs. Febs J., 272 (20). 5265-5277.

44. Ullman, J.R. An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery, 23. 31-42.

45. Verkhivker, G.M., Rejto, P.A., Gehlhaar, D.K. and Freer, S.T. Exploring the
energy landscapes of molecular recognition by a genetic algorithm: analysis of the
requirements for robust docking of HIV-1 protease and FKBP-12 complexes.
Proteins, 25 (3). 342-353.

46. Weininger, D. SMILES, a chemical language and information system. 1.
Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci., 28.
31-36.

47. Weininger, D., Weininger, A. and Weininger, J.L. SMILES. 2. Algorithm for
generation of unique SMILES notation. J. Chem. Inf. Comput. Sci., 29. 97-101.

48. Weskamp, N., Kuhn, D., Hullermeier, E. and Klebe, G. Efficient similarity search
in protein structure databases by k-clique hashing. Bioinformatics, 20 (10). 1522-
1526.

49. Wild, D.J. and Blankley, C.J. Comparison of 2D Fingerprint Types and Hierarchy
Level Selection Methods for Structural Grouping Using Ward's Clustering. J.
Chem. Inf. Comput. Sci., 40. 155-162.

50. Wildner, G. and Thurau, S.R. Database screening for molecular mimicry.
Immunol. Today, 18 (5). 252, doi:210.1016/S0167-5699(1097)81665-81669

51. Willett, P. Search techniques for database of two and three-dimensional chemical
structures. Journal of Medicinal Chemistry, 48.

52. Willett, P., Winterman, V. and Bawden, D. Implementation of nearest-neighbor
searching in an online chemical structure search system. J. Chem. Inf. Comput.
Sci., 26. 36-41.

53. Wipke, W.T., Krishnan, S. and Ouchi, G.I. Hash Functions for Rapid Storage and
Retrieval of Chemical Structures. J. Chem. Inf. Comput. Sci., 18. 32-37.

54. Wiswesser, W.J. A Chemical Line-Formula Notation. Crowell Co., New York,
1954.

55. www.stn-international.de.

99

56. Xu, Y. and Johnson, M. Algorithm for naming molecular equivalence classes
represented by labeled pseudographs. J. Chem. Inf. Comput. Sci., 41 (1). 181-185.

57. Xue, L., Godden, J.W., Stahura, F.L. and Bajorath, J. Design and evaluation of a
molecular fingerprint involving the transformation of property descriptor values
into a binary classification scheme. J. Chem. Inf. Comput. Sci., 43. 1151-1157.

58. Zhu, Z., Schuster, D.I. and Tuckerman, M.E. Molecular dynamics study of the
connection between flap closing and binding of fullerene-based inhibitors of the
HIV-1 protease. Biochemistry, 42 (5). 1326-1333.

59. Zupan, J. Algorithms for chemists. John Wiley & Sons, New York, 1989.

	Georgia State University
	ScholarWorks @ Georgia State University
	5-2-2008

	Design of a Structure Search Engine for Chemical Compound Database
	Hao Wang
	Recommended Citation

	Microsoft Word - Dissertation_hao_2007_rev14_tt.doc

