62,313 research outputs found

    Self-* overload control for distributed web systems

    Full text link
    Unexpected increases in demand and most of all flash crowds are considered the bane of every web application as they may cause intolerable delays or even service unavailability. Proper quality of service policies must guarantee rapid reactivity and responsiveness even in such critical situations. Previous solutions fail to meet common performance requirements when the system has to face sudden and unpredictable surges of traffic. Indeed they often rely on a proper setting of key parameters which requires laborious manual tuning, preventing a fast adaptation of the control policies. We contribute an original Self-* Overload Control (SOC) policy. This allows the system to self-configure a dynamic constraint on the rate of admitted sessions in order to respect service level agreements and maximize the resource utilization at the same time. Our policy does not require any prior information on the incoming traffic or manual configuration of key parameters. We ran extensive simulations under a wide range of operating conditions, showing that SOC rapidly adapts to time varying traffic and self-optimizes the resource utilization. It admits as many new sessions as possible in observance of the agreements, even under intense workload variations. We compared our algorithm to previously proposed approaches highlighting a more stable behavior and a better performance.Comment: The full version of this paper, titled "Self-* through self-learning: overload control for distributed web systems", has been published on Computer Networks, Elsevier. The simulator used for the evaluation of the proposed algorithm is available for download at the address: http://www.dsi.uniroma1.it/~novella/qos_web

    Trust beyond reputation: A computational trust model based on stereotypes

    Full text link
    Models of computational trust support users in taking decisions. They are commonly used to guide users' judgements in online auction sites; or to determine quality of contributions in Web 2.0 sites. However, most existing systems require historical information about the past behavior of the specific agent being judged. In contrast, in real life, to anticipate and to predict a stranger's actions in absence of the knowledge of such behavioral history, we often use our "instinct"- essentially stereotypes developed from our past interactions with other "similar" persons. In this paper, we propose StereoTrust, a computational trust model inspired by stereotypes as used in real-life. A stereotype contains certain features of agents and an expected outcome of the transaction. When facing a stranger, an agent derives its trust by aggregating stereotypes matching the stranger's profile. Since stereotypes are formed locally, recommendations stem from the trustor's own personal experiences and perspective. Historical behavioral information, when available, can be used to refine the analysis. According to our experiments using Epinions.com dataset, StereoTrust compares favorably with existing trust models that use different kinds of information and more complete historical information

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Characterizations of User Web Revisit Behavior

    Get PDF
    In this article we update and extend on earlier long-term studies on user's page revisit behavior. Revisits ar

    Online Model Evaluation in a Large-Scale Computational Advertising Platform

    Full text link
    Online media provides opportunities for marketers through which they can deliver effective brand messages to a wide range of audiences. Advertising technology platforms enable advertisers to reach their target audience by delivering ad impressions to online users in real time. In order to identify the best marketing message for a user and to purchase impressions at the right price, we rely heavily on bid prediction and optimization models. Even though the bid prediction models are well studied in the literature, the equally important subject of model evaluation is usually overlooked. Effective and reliable evaluation of an online bidding model is crucial for making faster model improvements as well as for utilizing the marketing budgets more efficiently. In this paper, we present an experimentation framework for bid prediction models where our focus is on the practical aspects of model evaluation. Specifically, we outline the unique challenges we encounter in our platform due to a variety of factors such as heterogeneous goal definitions, varying budget requirements across different campaigns, high seasonality and the auction-based environment for inventory purchasing. Then, we introduce return on investment (ROI) as a unified model performance (i.e., success) metric and explain its merits over more traditional metrics such as click-through rate (CTR) or conversion rate (CVR). Most importantly, we discuss commonly used evaluation and metric summarization approaches in detail and propose a more accurate method for online evaluation of new experimental models against the baseline. Our meta-analysis-based approach addresses various shortcomings of other methods and yields statistically robust conclusions that allow us to conclude experiments more quickly in a reliable manner. We demonstrate the effectiveness of our evaluation strategy on real campaign data through some experiments.Comment: Accepted to ICDM201

    Self-supervised automated wrapper generation for weblog data extraction

    Get PDF
    Data extraction from the web is notoriously hard. Of the types of resources available on the web, weblogs are becoming increasingly important due to the continued growth of the blogosphere, but remain poorly explored. Past approaches to data extraction from weblogs have often involved manual intervention and suffer from low scalability. This paper proposes a fully automated information extraction methodology based on the use of web feeds and processing of HTML. The approach includes a model for generating a wrapper that exploits web feeds for deriving a set of extraction rules automatically. Instead of performing a pairwise comparison between posts, the model matches the values of the web feeds against their corresponding HTML elements retrieved from multiple weblog posts. It adopts a probabilistic approach for deriving a set of rules and automating the process of wrapper generation. An evaluation of the model is conducted on a dataset of 2,393 posts and the results (92% accuracy) show that the proposed technique enables robust extraction of weblog properties and can be applied across the blogosphere for applications such as improved information retrieval and more robust web preservation initiatives
    corecore