14,749 research outputs found

    Exploring the Interplay between CAD and FreeFem++ as an Energy Decision-Making Tool for Architectural Design

    Get PDF
    The energy modelling software tools commonly used for architectural purposes do not allow a straightforward real-time implementation within the architectural design programs. In addition, the surrounding exterior spaces of the building, including the inner courtyards, hardly present a specific treatment distinguishing these spaces from the general external temperature in the thermal simulations. This is a clear disadvantage when it comes to streamlining the design process in relation to the whole-building energy optimization. In this context, the present study aims to demonstrate the advantages of the FreeFem++ open source program for performing simulations in architectural environments. These simulations include microclimate tests that describe the interactions between a building architecture and its local exterior. The great potential of this mathematical tool can be realized through its complete system integration within CAD (Computer-Aided Design) software such as SketchUp or AutoCAD. In order to establish the suitability of FreeFem++ for the performance of simulations, the most widely employed energy simulation tools able to consider a proposed architectural geometry in a specific environment are compared. On the basis of this analysis, it can be concluded that FreeFem++ is the only program displaying the best features for the thermal performance simulation of these specific outdoor spaces, excluding the currently unavailable easy interaction with architectural drawing programs. The main contribution of this research is, in fact, the enhancement of FreeFem++ usability by proposing a simple intuitive method for the creation of building geometries and their respective meshing (pre-processing). FreeFem++ is also considered a tool for data analysis (post-processing) able to help engineers and architects with building energy-efficiency-related tasks

    Cross-Platform Presentation of Interactive Volumetric Imagery

    Get PDF
    Volume data is useful across many disciplines, not just medicine. Thus, it is very important that researchers have a simple and lightweight method of sharing and reproducing such volumetric data. In this paper, we explore some of the challenges associated with volume rendering, both from a classical sense and from the context of Web3D technologies. We describe and evaluate the pro- posed X3D Volume Rendering Component and its associated styles for their suitability in the visualization of several types of image data. Additionally, we examine the ability for a minimal X3D node set to capture provenance and semantic information from outside ontologies in metadata and integrate it with the scene graph

    MPEG-4 tools and applications: an overview

    Get PDF
    In this paper we present an overview of the software tools currently available for the creation and display of MPEG-4 content. We first describe tools for encoding raw video into MPEG-4 compliant bitstreams. We then describe how this content may be used to create a complete MPEG-4 scene containing both graphical and interactive elements in addition to the more usual video and audio elements. Clearly, MPEG-4 content cannot be viewed without appropriate decoders and players and these are addressed in the third section of this paper. Finally, we demonstrate how these tools may be combined together to create MPEG-4 applications by presenting the details of two sample applications we have developed

    ROOT - A C++ Framework for Petabyte Data Storage, Statistical Analysis and Visualization

    Full text link
    ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, ROOT offers packages for complex data modeling and fitting, as well as multivariate classification based on machine learning techniques. A central piece in these analysis tools are the histogram classes which provide binning of one- and multi-dimensional data. Results can be saved in high-quality graphical formats like Postscript and PDF or in bitmap formats like JPG or GIF. The result can also be stored into ROOT macros that allow a full recreation and rework of the graphics. Users typically create their analysis macros step by step, making use of the interactive C++ interpreter CINT, while running over small data samples. Once the development is finished, they can run these macros at full compiled speed over large data sets, using on-the-fly compilation, or by creating a stand-alone batch program. Finally, if processing farms are available, the user can reduce the execution time of intrinsically parallel tasks - e.g. data mining in HEP - by using PROOF, which will take care of optimally distributing the work over the available resources in a transparent way

    Developing Interaction 3D Models for E-Learning Applications

    Get PDF
    Some issues concerning the development of interactive 3D models for e-learning applications are considered. Given that 3D data sets are normally large and interactive display demands high performance computation, a natural solution would be placing the computational burden on the client machine rather than on the server. Mozilla and Google opted for a combination of client-side languages, JavaScript and OpenGL, to handle 3D graphics in a web browser (Mozilla 3D and O3D respectively). Based on the O3D model, core web technologies are considered and an example of the full process involving the generation of a 3D model and their interactive visualization in a web browser is described. The challenging issue of creating realistic 3D models of objects in the real world is discussed and a method based on line projection for fast 3D reconstruction is presented. The generated model is then visualized in a web browser. The experiments demonstrate that visualization of 3D data in a web browser can provide quality user experience. Moreover, the development of web applications are facilitated by O3D JavaScript extension allowing web designers to focus on 3D contents generation

    XML in Motion from Genome to Drug

    Get PDF
    Information technology (IT) has emerged as a central to the solution of contemporary genomics and drug discovery problems. Researchers involved in genomics, proteomics, transcriptional profiling, high throughput structure determination, and in other sub-disciplines of bioinformatics have direct impact on this IT revolution. As the full genome sequences of many species, data from structural genomics, micro-arrays, and proteomics became available, integration of these data to a common platform require sophisticated bioinformatics tools. Organizing these data into knowledgeable databases and developing appropriate software tools for analyzing the same are going to be major challenges. XML (eXtensible Markup Language) forms the backbone of biological data representation and exchange over the internet, enabling researchers to aggregate data from various heterogeneous data resources. The present article covers a comprehensive idea of the integration of XML on particular type of biological databases mainly dealing with sequence-structure-function relationship and its application towards drug discovery. This e-medical science approach should be applied to other scientific domains and the latest trend in semantic web applications is also highlighted

    INTRODUCING MICROSOFT SILVERLIGHT

    Get PDF
    Despite all the wonderful things you can say about HTML, CSS, and JavaScript, they form a pretty poor environment for developing modern sites and applications. If you care about your content working on most web browsers (or even just Internet Explorer and Firefox), accommodating their differences can be maddening. Many techniques and JavaScript libraries have been developed and shared over the years that can reduce this frustration, but none of them are silver bullets. In addition to browser differences, the graphical capabilities of HTML are too limiting for many user experiences that people want to create. Drawing a simple line, incorporating video, and a number of other things are extremely difficult or impossible with HTML alone. It’s not that these technologies were poorly designed, but simply that they were designed for hyperlinked documents rather than the extremely rich presentations that most people want to create on the Web these days.Silverlight, Microsoft

    vrmlgen: An R Package for 3D Data Visualization on the Web

    Get PDF
    The 3-dimensional representation and inspection of complex data is a frequently used strategy in many data analysis domains. Existing data mining software often lacks functionality that would enable users to explore 3D data interactively, especially if one wishes to make dynamic graphical representations directly viewable on the web. In this paper we present vrmlgen, a software package for the statistical programming language R to create 3D data visualizations in web formats like the Virtual Reality Markup Language (VRML) and LiveGraphics3D. vrmlgen can be used to generate 3D charts and bar plots, scatter plots with density estimation contour surfaces, and visualizations of height maps, 3D object models and parametric functions. For greater flexibility, the user can also access low-level plotting methods through a unified interface and freely group different function calls together to create new higher-level plotting methods. Additionally, we present a web tool allowing users to visualize 3D data online and test some of vrmlgen's features without the need to install any software on their computer.

    Cosmic cookery : making a stereoscopic 3D animated movie.

    Get PDF
    This paper describes our experience making a short stereoscopic movie visualizing the development of structure in the universe during the 13.7 billion years from the Big Bang to the present day. Aimed at a general audience for the Royal Society's 2005 Summer Science Exhibition, the movie illustrates how the latest cosmological theories based on dark matter and dark energy are capable of producing structures as complex as spiral galaxies and allows the viewer to directly compare observations from the real universe with theoretical results. 3D is an inherent feature of the cosmology data sets and stereoscopic visualization provides a natural way to present the images to the viewer, in addition to allowing researchers to visualize these vast, complex data sets. The presentation of the movie used passive, linearly polarized projection onto a 2m wide screen but it was also required to playback on a Sharp RD3D display and in anaglyph projection at venues without dedicated stereoscopic display equipment. Additionally lenticular prints were made from key images in the movie. We discuss the following technical challenges during the stereoscopic production process; 1) Controlling the depth presentation, 2) Editing the stereoscopic sequences, 3) Generating compressed movies in display speci¯c formats. We conclude that the generation of high quality stereoscopic movie content using desktop tools and equipment is feasible. This does require careful quality control and manual intervention but we believe these overheads are worthwhile when presenting inherently 3D data as the result is signi¯cantly increased impact and better understanding of complex 3D scenes
    corecore