109,044 research outputs found

    I. Collisional evolution and reddening of asteroid surfaces: The problem of conflicting timescales and the role of size-dependent effects

    Full text link
    Space weathering is the generic term used for processes that modify the optical properties of surfaces of atmosphereless rocky bodies under exposure to the space environment. The general agreement about the relevance of the effects of space weathering on the spectral properties of S-complex asteroids fails when some basic quantitative estimates are attempted. In particular, there is severe disagreement regarding the typical timescales for significant spectral reddening to occur, ranging from 1 Myr to 1 Gyr. Generally speaking, the spectral reddening of an individual object can be considered as the sum of three terms, one (which is relevant for statistical analyses) depending on the exposure of the object to space weathering during its lifetime, a second one due to the original surface composition, and a third one (a "noise" term) due to the combination of poorly constrained effects (e.g., structure and texture of the surface). The surface of an asteroid is usually covered by regolith, and its presence and properties presumably play a critical role in the weathering processes. In this paper we discuss the role played by collisional evolution in affecting the spectral properties of asteroids and refreshing the surfaces due to the formation of ejecta, and the necessity of a simultaneous modeling of collisions and weathering processes. We introduce a new idea, based on the possibility of a sort of saturation of the refreshing process whenever a massive reaccumulation of the impact ejecta takes place. In this case, a dependence of the overall reddening on the asteroid size should naturally come out. We show that this conclusion is indeed supported by available main belt asteroid spectroscopic data.Comment: Accepted by MNRA

    Using Simulated Micrometeoroid Impacts to Understand the Progressive Space Weathering of the Surface of Mercury

    Get PDF
    The surfaces of airless bodies such as Mercury are continually modified by space weathering, which is driven by micrometeoroid impacts and solar wind irradiation. Space weathering alters the chemical composition, microstructure, and spectral properties of surface regolith. In lunar and ordinarychondritic style space weathering, these processes affect the reflectance properties by darkening (lowering of reflectance), reddening (increasing reflectance with increasing wavelength), and attenuation of characteristic absorption features. These optical changes are driven by the production of nanophase Febearing particles (npFe). While our understanding of these alteration processes has largely been based on data from the Moon and near-Earth S-type asteroids, the space weathering environment at Mercury is much more extreme. The surface of Mercury experiences a more intense solar wind flux and higher velocity micrometeoroid impacts than its planetary counterparts at 1 AU. Additionally, the composition of Mercurys surface varies significantly from that of the Moon. Most notably, a very low albedo unit has been identified on Mercurys surface, known as the low reflectance material (LRM). This unit is enriched with up to 4 wt.% carbon, likely in the form of graphite, over the local mean. In addition, the surface concentration of Fe across Mercurys surface is low (<2 wt.%) compared to the Moon. Our understanding of how these low-Fe and carbon phases are altered as a result of space weathering processes is limited. Since Fe plays a critical role in the development of space weathering features on other airless surfaces (e.g., npFe), its limited availability on Mercury may strongly affect the space weathering features in surface materials. In order to understand how space weathering affects the chemical, microstructural, and optical properties of the surface of Mercury, we can simulate these processes in the laboratory [7]. Here we used pulsed laser irradiation to simulate the short duration, high temperature events associated with micrometeoroid impacts. We used forsteritic olivine, likely present on the Mercurian surface, with varying FeO contents, each mixed with graphite, in our experiments. We then performed reflectance spectroscopy and electron microscopy to investigate the spectral, chemical, and microstructural changes in these samples

    Investigating Variation in the Prevalence of Weathering in Faunal Assemblages in the UK: A Multivariate Statistical Approach

    Get PDF
    This article presents an exploratory multivariate statistical approach to gaining a more comprehensive understanding of variation in subaerial bone weathering in a British context. Weathering is among the most common taphonomic modifications and provides a crucial line of evidence for reconstructing the taphonomic trajectories of faunal assemblages and archaeological deposits. It provides clear evidence for prolonged subaerial exposure either before deposition in a context or because of later disturbance. In combination with other taphonomic indices such as gnawing, trampling, abrasion and fracture patterns, weathering can be used to reconstruct depositional histories and to investigate the structured treatment of different body parts or taxa in deposition. However, a broad range of factors affect the prevalence and severity of weathering, and therefore patterns can rarely be interpreted at face value. Many variables such as predepositional microenvironment cannot be traced archaeologically. Other contributory factors pertaining to the structural properties of elements and taxa can be discerned and must be taken into account in interpreting weathering signatures. However, disagreement exists regarding which variables are most important in mediating weathering. In addition for zooarchaeologists to interpret modification patterns, it is necessary for elements and taxa that are most likely to be affected by weathering to be defined. This is the case as deposits that are dominated by those classes of remains are likely to exhibit greater modification than those that are not, even if depositional histories were similar. Through a combination of classification tree and ordinal regression analysis, this article identifies which archaeologically recoverable variables explain the greatest variance in weathering and which anatomical elements and taxa are most likely to be affected in archaeological deposits in the UK

    Trace elements in Antarctic meteorites: Weathering and genetic information

    Get PDF
    Antarctic meteorite discoveries have created great scientific interest due to the large number of specimens recovered (approximately 7000) and because included are representatives of hitherto rare or unknown types. Antarctic meteorites are abundant because they have fallen over long periods and were preserved, transported, and concentrated by the ice sheets. The weathering effects on the Antarctic meteorites are described. Weathering effects of trace element contents of H5 chondrites were studied in detail. The results are examined. The properties of Antarctic finds and non-Antarctic falls are discussed

    Using [delta] ph as a geochemical index of illite neoformation in saprolite

    Full text link
    Sal pH is routinely measured for agronomic purposes. When the difference between KCI pH and H2O pH, or ApH, yields positive values, it is used by soil scientists as a classification criterion for identifying anionic subgroups according to the Soil Taxonomy or geric properties according to the WRB. Negative values have not been granted much attention. Here we focus on the occurrence of highly negative ApH values in the weathering zone of profiles developed on gneiss in semiarid Northeast Brazil and semiarid South India and interpret them as proxies of a geochemical weathering process involving the neoformation of illite. Detailed optical, chemical and mineralogical characterizations involving scanning electron microscopy coupled with X-ray element mapping demonstrate the neoformation of illite inside plagioclase feldspar crystals after their partial dissolution. This study thus reveals that meteoric weathering is capable of producing Mite not only from mica, Le., by a transformation process, but also within non-alkali feldspar by a neoformation process. The ApH is shown to be a good proxy for detecting such weathering signatures because the recently neoformed Mate flakes, which present a significant compositional deficit in K, reveal their presence by a detectable uptake of K from the KCI solution. This finding changes the perspective over the origin of illite in continental environments, which has most commonly been attributed to hydrothermal processes. (Texte intégral

    An approach for characterising the weathering behaviour of Flysch slopes applied to the carbonatic Flysch of Alicante (Spain)

    Get PDF
    Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock masses are related to differential weathering of the lithologies that make up the slope. Therefore, the weathering characteristics of the intact rock are of great importance for the study of these types of slopes and their associated instability processes. The main aim of this study is to characterise the weathering properties of the different lithologies outcropping in the carbonatic Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on them, following slope excavation. To this end, 151 strata samples obtained from 11 different slopes, 5–40 years old, were studied. The lithologies were identified and their mechanical characteristics obtained using field and laboratory tests. Additionally, the slaking properties of intact rocks were determined, and a classification system proposed based on the first and fifth slake cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. Information obtained from the laboratory and the field was used to characterise the weathering behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were related to the in-situ weathering properties of rocks (i.e., the weathering profile, patterns and length, and weathering rate). The proposed relationship between laboratory test results, field data, and in-situ observations provides a useful tool for predicting the response of slopes to weathering after excavation during the preliminary stages of design.This work was partially funded by the University of Alicante under the projects vigrob-157 uausti10–18, uausti11–11 and gre09–40 and by the Generalitat Valenciana within project gv/2011/044

    The Alcoa ram fastener: A reusable blind rivet

    Get PDF
    Results of tensile, shear, fatigue and accelerated weathering tests are presented for the ram fastener, a reusable, single unit blind rivet. The effects of variations in hole size, grip length and sheet thickness on strength properties of the fastener were determined. The test results show these fasteners to have strength characteristics suitable for light structural applications. Exposure to accelerated weathering did not impair their performance

    Structure of supercritically dried calcium silicate hydrates (C-S-H) and structural changes induced by weathering

    Get PDF
    The nanostructure of supercritically dried calcium silicate hydrates was researched. This particular drying procedure was used to avoid nanostructure modifications due to conventional drying processes. Thus, in this study, the as-precipitated cementitious C-S-H structure was obtained for the first time. A specific surface area 20 % larger than conventionally dried C-S-H was measured. Given the importance of this nanostructured phase for the properties of hydrated cements, especially when in contact with CO2-rich environments, the supercritically dried C-S-H was weathered for 2 weeks. The structural effects of this weathering process on the C-S-H were researched and calcium carbonate microcrystal precipitation or the presence of silica by-product are reported. Calcite and aragonite polymorphs were observed, as well as nanoporous silica forming globular arrangements. In addition, 2 weeks of weathering was not enough to carbonate the entire C-S-H sample.Junta de Andalucía TEP11

    Engineering geology of British rocks and soils : Lias Group

    Get PDF
    The report begins with an introduction and a detailed modern assessment of the geology of the Lias Group in terms of both stratigraphy and lithology. The modern lithostratigraphy is placed in the context of the old, and sometimes more familiar, usage. The next two chapters deal with the mineralogy of a suite of samples collected for the project, and an assessment of the nature and influence of weathering based on a detailed analysis of the Lias dataset held in the BGS National Geotechnical Properties Database. The following chapters cover geohazards associated with the Lias Group, and a brief overview of the wide variety of industrial applications for which the Lias is well known. The geotechnical database forms the basis of the penultimate chapter, geotechnical properties. The contents of the database are analysed, interpreted, presented in graphical form, and discussed in terms of statistical variation and in the light of likely engineering behaviour. The engineering geology of the Lias Group is discussed in the final chapter, borrowing from the preceding chapters. A comprehensive cited reference list and a bibliography are provided. In addition to the large number of technical data provided to BGS, a small data set has been generated by BGS laboratories, particularly in areas where the main database was deficient, and also in connection with associated BGS studies of the swelling and shrinkage properties of the Lias Group. The individual items of data making up the database are not attributed. However, the contribution of a wide range of consultancies, contractors, authorities, and individuals is acknowledged. It is hoped that this report will provide a source of useful information to a wide range of engineers, planners, scientists, and other interested parties concerned with Lias Group materials. It should be noted that whilst quantitative technical data are included in this report, these should not be used as a substitute for proper site investigation

    The Sands of Phobos: The Martian moon's eccentric orbit refreshes its surface

    Full text link
    The surface of the Martian moon Phobos exhibits two distinct geologic units, known as the red and blue units. The provenance of these regions is uncertain yet crucial to understanding the origin of the Martian moon and its interaction with the space environment. Here we show that Phobos' orbital eccentricity can cause sufficient grain motion to refresh its surface, suggesting that space weathering is the likely driver of the dichotomy on the moon's surface. In particular, we predict that blue regions are made up of pristine endogenic material that can be uncovered in steep terrain subject to large variations in the tidal forcing from Mars. The predictions of our model are consistent with current spacecraft observations which show that blue units are found near these regions.Comment: 8 pages, 4 figures, submitted to Nature Geoscienc
    corecore