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Abstract 10 

Various studies indicate that most of the slope instabilities affecting Flysch heterogeneous rock 11 

masses are related to differential weathering of the lithologies which make up the slope. 12 

Therefore, the weathering characteristics of the intact rock are of great importance for the study 13 

of these types of slopes and their associated instability processes. The main aim of this study is 14 

to characterize the weathering properties of the different lithologies outcropping in the carbonatic 15 

Flysch of Alicante (Spain), in order to understand the effects of environmental weathering on 16 

them, following slope excavation. To this end, 151 strata samples obtained from 11 different 17 

slopes, 5 to 40 years old, were studied. The lithologies were identified and their mechanical 18 

characteristics obtained using field and laboratory tests. Additionally, the slaking properties of 19 

intact rocks was determined, and a classification system proposed based on the first and fifth 20 

slake-cycles (Id1 and Id5 respectively) and an Index of Weathering (IW5), defined in the study. 21 

Information obtained from the laboratory and the field was used to characterize the weathering 22 

behaviour of the rocks. Furthermore, the slaking properties determined from laboratory tests were 23 

related to the in situ weathering properties of rocks (i.e. the weathering profile, patterns and length 24 

and weathering rate). The proposed relationship between laboratory test results, field data and in 25 

situ observations provides a useful tool for predicting the response of slopes to weathering after 26 

excavation during the preliminary stages of design. 27 

 28 

Keywords: Carbonatic Flysch lithologies · Slake Durability Test · index of weathering · 29 

weathering profile · weathering rate. 30 

Résumé 31 

Certains études indiquent que la plupart des instabilités de pente qui affectent les masses 32 

rocheuses hétérogènes telles que des formations de Flysch sont liés au l’effritement différentielle 33 

des lithologies qui composent la pente. Par conséquent, la caractérisation du comportement 34 

devant de l’effritement de la matrice rocheuse c’est un aspect clé pour l'étude de ces types de 35 

pentes et de leurs processus d'instabilité associés. Le principal objectif de ce travail est la 36 
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caractérisation des propriétés de résistance aux intempéries des différentes lithologies qui 37 

affleurent dans la zone d'étude afin de connaître leur comportement devant l'effritement après 38 

l'excavation des pentes. A cet effet, ont été étudiés 151 échantillons obtenus à partir de strates 39 

de 11 pentes différentes, âgés de 5 à 40 ans. Ces lithologies ont été identifiées et caractérisées 40 

mécaniquement en utilisant des critères de terrain et en laboratoire. En plus, le comportement 41 

devant le slaking de la matrice rocheuse a été déterminé, en proposant une classification basée 42 

sur le premier et le cinquième cycle de l’assai cyclique de durabilité  (Id1 et Id5 respectivement) 43 

et un index défini dans le présent travail, appelé Index of Weathering (IW5).Toute l’information 44 

compilée à partir de laboratoire et de terrain a été utilisé pour caractériser les différents 45 

comportements devant l’effritement des roches étudiées. En outre, les propriétés du slaking 46 

basées sur des tests de laboratoire ont été liées avec la résistance aux intempéries des roches 47 

in situ (c’est-à-dire, le profil d’effritement, modèles et longueur et taux d’effritement). La relation 48 

indiquée entre le laboratoire, les données de terrain et les observations in situ fournit un outil très 49 

utile pour évaluer l'évolution devant l’effritement espéré des pentes depuis leur excavation aux 50 

étapes préliminaires d’avant-projets. 51 

 52 

Mots clés : Lithologies carbonatées du Flysch · essai cyclique de durabilité · index d’effritement 53 

· profil d’effritement · taux d’effritement 54 

 55 

1. Introduction 56 

The lithologies that outcrop in the study area consist of Palaeogene sediments from the Surco 57 

Flysch El Campello-Villajoyosa formation (Leret-Verdú et al. 1976 and Colodrón and Ruiz 1980). 58 

This zone which extends along the littoral and pre-littoral area of Alicante province, bordered by 59 

Aguas de Busot to the West, the Mediterranean Sea to the East, Alicante to the South and 60 

Benidorm to the North (Figure 1), is densely populated and crossed by three main transport 61 

arteries (the AP-7 and N-332 highways and the FGV railway). The cut slopes of these routes and 62 

the buildings placed over the coastal cliffs in this area are affected by numerous instabilities that 63 

are often related to the differing durability of the outcropping lithologies (Cano and Tomás 2013a). 64 

The durability of weak rocks is an engineering property commonly used for measuring their 65 

resistance to weakening and disintegration (Franklin and Chandra 1972). Slaking resistance 66 

depends on different parameters, commonly cited in literature as permeability, porosity, 67 

adsorption, etc. (Crosta 1998). Due to the complexity of the phenomenon, many authors have 68 

worked on this topic (Franklin and Chandra 1972; Richardson and Long 1987; Gamble 1971; 69 

Taylor 1988; Dick et al. 1994; Dick and Shakoor 1995). 70 

The main scope of this paper is to study the weathering properties of Flysch slopes in Alicante 71 

throughout their lifetime. This study aims to provide expected weathering rate values and patterns 72 

of newly excavated slopes from geological and geomechanical descriptions, and the slaking 73 

properties of the lithologies of the slope. Note that the determination of the weathering rate is 74 
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highly useful because most of the instabilities observed in the 194 previously studied slopes in 75 

the study area are closely linked with the degradation of the marly lithologies (Cano and Tomás 76 

2013a). 77 

The study area is characterized by the absence of frosts and high temperature gradients (AEMET 78 

2005) and as a consequence the weathering of the different lithologies is mainly caused by drying-79 

wetting cycles due to rainfall and atmospheric moisture (Table 1). Furthermore, no evidence of 80 

rock weathering caused by salt precipitations was observed in the slopes which were studied. 81 

 82 

Table 1. Normal climatic values of Alicante from 1971 to 2000), AEMT (2005).  83 
Month T (°C) TM (°C) Tm (°C) R (mm) H (%) DR DN DT DF DH DD I 

January 11.5 16.8 6.2 22 67 4 0 0 0 1 8 177 

February 12.4 17.8 7.0 26 64 3 0 0 0 0 6 180 

March 13.7 19.2 8.2 26 64 4 0 1 1 0 7 230 

April 15.5 20.9 10.1 30 62 4 0 2 0 0 6 246 

May 18.4 23.6 13.3 33 65 4 0 2 0 0 5 278 

June 22.2 27.2 17.1 17 64 2 0 2 0 0 10 300 

Juliet 24.9 30.1 19.7 6 64 1 0 1 0 0 16 333 

August 25.5 30.6 20.4 8 67 1 0 1 0 0 13 304 

September 23.1 28.4 17.8 47 68 3 0 2 0 0 8 255 

October 19.1 24.4 13.7 52 69 4 0 2 0 0 6 220 

November 15.2 20.4 10.0 42 68 4 0 1 0 0 6 179 

December 12.5 17.6 7.3 26 68 4 0 0 0 0 7 163 

Year 17.8 23.1 12.6 336 66 37 0 14 2 1 97 2864 

T= monthly/annual average temperature, TM= monthly/annual average of daily maximum temperature, Tm= 
monthly/annual average of daily minimum temperature, R= monthly/annual average rainfall, H= average relative 
moisture, DR= monthly/annual average days with rainfall higher to 1 mm, DN= monthly/annual average of snowy days, 
DT= monthly/annual average of stormy days, DF= monthly/annual average of foggy days, DH= monthly/annual average 
of frosty days, DD= monthly/annual average of cloudless days, I= monthly/annual average of sunny days 

 84 

Consequently, due to area’s climate, the weathering potential of the lithologies in the study area 85 

was expected to be related to their slaking properties. Thus, durability was studied using the Slake 86 

Durability Test, originally developed by Franklin and Chandra (1972) and commonly used 87 

worldwide (as well as being recommended by the International Society for Rock Mechanics (ISRM 88 

1977)). This test allows two different durability indices to be obtained, based on one-cycle (Id1) 89 

and two-cycle (Id2) tests. Subsequently this method was standardized by the American Society 90 

for Testing and Materials (ASTM 2004) taking the two-cycle Slake Durability Test as the only 91 

weathering quantification index. 92 

In this study the different lithologies present in the study area are classified attending to their 93 

slaking durability properties and a new slaking index is defined. Furthermore, weathering 94 

penetration into the slope was measured in the field for the different lithologies. Weathering 95 

patterns were also studied and lithologies were characterized based on field descriptions and 96 
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mineralogical analysis. Finally, rock strength was evaluated in the field according to ISRM (1981) 97 

recommendations and in the laboratory using Point Load Tests (ISRM 1985). 98 

 99 

Figure 1. Location and geological maps of the study area (based on Vera (2004) in Guerrera et al. (2006)) 100 
and the rock exposures studied in this paper.  101 

 102 

This data allowed the different lithologies to be classified from a mineralogical, mechanical and 103 

visual perspective and their slaking properties related with these characteristics. Furthermore, the 104 

different slaking properties were related to the weathering patterns and profiles observed in the 105 

field.  106 

Some authors have proposed indices for quantifying the degree of alteration of rocks (e.g. Taylor 107 

1988, Kiliç 1999). However, these indices are very difficult to be applied to the soft altered rocks 108 
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from the study area. For example, the Unified Alteration Index (Kiliç 1999) requires parameters 109 

such as the uniaxial compressive strength and the ultrasonic velocity which are impossible to 110 

obtain for the most altered samples which are degraded almost to soil. 111 

The paper is structured as follows. In the second section the geological setting of the study area 112 

is briefly defined. Section three describes the study methodology. Section 4 is focused on the 113 

description of the lithological and geomechanical properties of the rock masses which were 114 

studied. The proposed method for the weathering characterization of carbonatic Flysch lithologies 115 

is presented in section 5. The results are presented, analysed and discussed in section 6. The 116 

main conclusions are summarized in section 7.  117 

 118 

2. Lithological setting of the study area 119 

The Flysch sequence of Alicante (Figure 1) is composed of pelagic sediments, predominated by 120 

sequences of grey marls and thin white marly limestones (hemipelagites) that constitute the 121 

rythmite predominated by marls. This sequence may overlap calcarenitic turbiditic episodes. 122 

However, the sedimentological complexity of the Flysch formation is even greater because there 123 

are some superposed composite gravitational processes such as mélanges and debrites (Cano 124 

and Tomás 2013a). 125 

In this study, 11 slopes were described and fully characterized (Figure 1 and Table A1). 151 intact 126 

rock samples were taken from these slopes and tested. These samples were extracted from the 127 

different lithologies present in the selected slopes and were described in detail at field and 128 

geologically classified as: a) Thick bedding calcarenites (Grainstone of turbiditic facies of channel 129 

(Ta-b)); b) Thick bedding calcarenites (grainstone of turbiditic facies of channel (Ta-b) or sheet 130 

flood facies (Tb, Tb-c)); c) Thin bedding calcarenites (Turbiditic thinbeds of fan fringe facies (Tb-131 

c-d)); d) Poorly  cemented thick bedding calcarenites (Grainstone of turbiditic facies of channel 132 

(Ta-b)); e) Poorly cemented thin bedding calcarenites (Turbiditic thin beds of fan fringe facies (Tb-133 

c-d)); f) Slightly marly limestones; g) Marly limestones; h) Silty calcareous marls; i) Silty marls; j) 134 

Calcareous marls-marls; k) Sheet silty marls; l) Soft marls; m) Sheet marls; n) Soft calcareous 135 

mélanges; and o) Calcareous debrites. 136 

 137 

3. Methodology  138 

3.1. General overview 139 

The main aim of this study is to characterize the weathering properties of the different lithologies 140 

outcropping in the study area for use in predicting their expected weathering behaviour after slope 141 

excavation. For this purpose, the different lithologies were identified and their mineralogical and 142 

mechanical characteristics obtained. 5-cycle slake durability tests were performed on intact rock 143 

samples. Additionally, the weathering patterns of the lithologies studied were described based on 144 
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field observations and weathering profiles, and weathering rates were measured (Figure 2). The 145 

following paragraphs give details of the testing which was performed. 146 

 147 

 148 

Figure 2. Conceptual sketch of the weathering profile characterization of the Flysch lithologies. 149 

 150 

3.2. Intact rock mineralogy 151 

In order to characterize intact rock from a geomechanical point of view it is necessary to define 152 

its physical properties and mechanical properties (mainly mechanical strength and durability) 153 

(Goel and Singh 2011). In this study, the different lithologies are described in the field using a 154 

simplified geological classification of rocks based on its genetic category, structure, composition 155 

and grain size (Geological Society of London 1977). Furthermore, a mineralogical 156 

characterization of the samples by X-ray diffraction was performed. Because some of the samples 157 

were of marly composition, they were characterized in two different stages. Firstly, X-ray 158 

diffractograms of all the samples were obtained. Secondly, X-ray diffractograms of the oriented 159 

aggregate of samples with high phyllosilicate content were obtained in order to identify them 160 

according to Robert and Tessier’s (1974) methodology. Finally, for some representative samples 161 

the carbonatic contents obtained from the interpretation of the X-ray diffractograms were 162 

compared with those obtained using the Bernard calcimeter method (ASTM 2007), in order to 163 

validate these results.  164 

Data were collected and interpreted using the XPowder software package, (Martin 2004) whose 165 

qualitative search-matching procedure was based on the ICDD-PDF2 database. 166 

 167 

 168 
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3.3. Intact rock mechanical strength: Point Load Test 169 

Mechanical strength can be evaluated by means of uniaxial compressive strength, tensile 170 

strength and point load test results (ISRM 1981). Mechanical strength may also be estimated 171 

through simple field indices (ISRM 1981). In this study, Point Load Tests were performed in order 172 

to classify the different lithologies according to their point load strength index (Is(50)). Anisotropy 173 

(which was pronounced in the turbiditic rock samples) was considered using the ISRM procedure 174 

(ISRM 1985), by obtaining the point load strength in two orthogonal directions. This data allowed 175 

the anisotropy factor to be calculated (i.e. the ratio between the maximum and the minimum point 176 

load strength values calculated for a sample in two orthogonal directions). When the samples 177 

exhibited anisotropy (i.e. an anisotropy factor higher than 1.6 similar to the value proposed by 178 

Ramamurthy (1993)) the lower Is(50) value was adopted as representative instead of the mean 179 

value. 180 

 181 

3.4. Intact rock slaking properties: Slake Durability Test 182 

The Slake Durability Test was also used in this study. It is one of the simplest tests in rock 183 

mechanics and is a very useful and widely used tool for characterizing the environmental 184 

weathering resistance of rock. The main reason why this test was selected was due to its potential 185 

as a tool for classifying the carbonatic flysch lithologies in order to predict the deterioration of 186 

Flysch rock slopes based on wetting and drying cycles. 187 

 Although originally the Slake Durability Test was developed for testing the weathering potential 188 

of shales, mudstones, siltstones, and other clay-bearing rocks (Franklin and Chandra 1972), the 189 

slake durability index is typically used for testing weak rocks such as mudrocks, marls, 190 

ignimbrites, conglomerates, and poorly cemented sandstones (Sabatakakis et al. 1993, Santi 191 

1998, Czerewko and Crips 2001, Erguler and Ulusay 2009, Miščcević and Vlastelica 2011). As 192 

such, although in the Flysch formation there are some very competent, hard turbiditic rocks that 193 

show very high durability indices, in order to classify the Flysch lithologies using a uniform 194 

weathering potential criteria the Slake Durability Test was used for testing all of the samples. 195 

Usually, the durability of weak rocks is assessed using the second-cycle slake durability index. 196 

Nevertheless, some researchers (Gamble 1971, Taylor 1988, Moon and Beattie 1995, Ulusay et 197 

al. 1995, Bell et al. 1997, Crosta 1998, Gökçeoğlu et al. 2000, Miščcević and Vlastelica 2011) 198 

suggested that index values taken after three or more cycles of slaking and drying may be useful 199 

when evaluating rocks of higher durability, such as those in this study. For example, Ulusay et al. 200 

(1995) performed a five-cycle Slake Durability Test on a marly spoil pile material and on samples 201 

of the original rock from the benches of a coal strip mine, because weak laminated and clay-202 

bearing rocks with slake durability index (Id2) equal to or greater than 90% (medium high and high 203 

durability according to Gamble 1971) degrade to a spoil material. On the other hand, Miščcević 204 

and Vlastelica (2011), following a similar argument, performed a four-cycle slake durability test 205 

on forty samples from a Flysch formation in Dalmatia (Croatia), observing the influence of the 206 

number of slaking cycles on the slake durability index, and grouping the samples into families 207 
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according to their properties. The need to evaluate the long-term weathering properties of the 208 

rock also involves performing several cycles. Another reason for using a low number of cycles is 209 

because the higher the number of cycles, the longer the duration of the test (note that each cycle 210 

can last more than 24 h due to the need to oven dry the samples).  211 

In the study area it was noted that some calcareous marls whose intact rock samples provided 212 

high Id1 and Id2 values (“Very high” or “Extremely high” durability according to Franklin and 213 

Chandra’s (1972) classification and “Medium-high” durability according to Gamble’s (1971) 214 

classification, based on Id1 and Id2 respectively) exhibited different durability properties in the 215 

field. The observed weathering of the rocks was much higher than that predicted by the SDT 216 

indices (Figure 3).  217 

 218 

Fig. 3. Example of heavily degraded calcareous marls with high Id1 and Id2 indices. Note that the one-cycle 219 
(Id1) and two-cycle (Id2) SDT results classify both lithologies as “Extremely high” (samples a and b), “Very 220 
high” (sample a) and “Extremely high” durability (sample b), respectively. See the text for more details. 221 

 222 

When the whole slope (Figure 4) from which the samples shown in Figure 3 were obtained is 223 

analysed, a general degraded state may be observed. However, surprisingly 20 layers from the 224 

22 recognized strata showed an Id1 index higher than 95% (“Extremely high” durability). The rest 225 

of the strata showed an Id1 index of between 90 and 95, and as a consequence may be classified 226 

as of “Very high” durability. According to Id2 indices, the durability of the different layers of the 227 

slope can be classified as “Medium-high” (Id2 from 85 to 95%), “High” (Id2 from 95 to 98%) and 228 

“Very high” (Id2 higher than 99%) for four, twelve and six layers, respectively (Figure 4). As a 229 

consequence, it is obvious that Id1 and Id2 indices do not adequately reproduce the real 230 

degradation properties of the Flysch lithologies studied, providing optimistic values. 231 

 It should be noted that the superficial rock specimens found on the slopes usually present signs 232 

of weathering or even intense degradation. As a consequence, the Flysch rock samples tested 233 

correspond to intact rocks that were obtained from the interior of the slope.  234 

Taking into account the aforementioned issues, intact rock samples were subjected to more 235 

cycles than the number of cycles specified by the ASTM (2004) procedure for Slake Durability 236 

Test, in order to better characterize the durability of Flysch lithologies over longer time periods.  237 

Furthermore, detailed analysis of SDT results for the different lithologies (Figure 8) highlighted an 238 

attenuation of the mass lost between the fourth and fifth cycle. As a consequence, the five-cycle 239 
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slake durability test index (Id5) is adopted as a reference value for characterizing the resistance 240 

of Flysch rocks to degradation. 241 

 242 

 243 

Fig. 4. General view of a slope included in this study (left) and the Id1 to Id5 values of the 22 carbonatic 244 
lithological layers of which it is composed (right).  245 

 246 

Thus to summarise, in this study the Slake Durability Test was employed following the procedure 247 

suggested by ASTM (2004), adopting five cycles as the adequate number of cycles to be 248 

considered because of: a) the need to compare hard and soft lithologies using the same 249 

parameter; b) the existence of some hard rocks which are unaffected by a low number of cycles; 250 

c) the need to study the long-term behaviour of the rock weathering properties; and d) the need 251 

to avoid an excessively long test period. 252 

The samples were obtained from the unaltered rock, removing the superficial disintegrated layer. 253 

Subsequently the intact rock samples were transported to the laboratory in plastic bags, and 254 

maintained at a constant temperature. The time between storage and testing was always less 255 

than one week. 256 

While the tests were performed the laboratory temperature was also kept constant (24 ºC) in order 257 

to conserve the humidity and temperature conditions. 258 

The tests were performed according to the ASTM (2004) procedure that recommends the use of 259 

distilled water with similar aggressiveness to the rainwater that is the responsible for the humidity 260 

changes in the rock slopes being studied. 261 
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151 specimens obtained from 11 different slopes located between El Campello and Villajoyosa 262 

(9 slopes) and Aigües de Busot (2 slopes) were tested (Figure 1). Four of these slopes were only 263 

partially characterized using at least 2 samples which were taken from representative areas of 264 

the slopes in which clear differential weathering was observed (Table A1). 265 

 266 

3.5. Weathering patterns 267 

In order to relate slake durability to field weathering behaviour, different weathering patterns of 268 

the lithologies in the study area were defined, studying the strata from which the intact rock 269 

samples were extracted for their characterization and testing in the laboratory. Furthermore, 87 270 

strata were excavated from the slope surface to bedrock, in order to measure the length of the 271 

strata affected by the different weathering patterns, and subsequently establish their weathering 272 

profiles. 273 

Note that the outcrops which were studied are composed of alternating layers of different 274 

weathering potential. As a consequence, when the marly layers weather, this generates highly 275 

impermeable residual soils which act as a protection layer that considerably reduces water 276 

infiltration and protects the underlying layers against weathering. 277 

Although the depth of weathering is usually measured vertically from surface level, (Chigira et al. 278 

2002, Jeong et al. 2005), in this study it was measured from the slope face in order to characterize 279 

the weathering profile of the different lithologies which compose the strata of the slope. The 280 

weathering profile was studied only for the slopes whose excavation age was known and which 281 

had not been re-excavated or scaled since their original excavation. The weathering profile 282 

characterization was performed using a reference line (in this case a long metal ruler) which was 283 

aligned with the harder strata of the slope that were not degraded or only slightly degraded and 284 

had not suffered rockfalls resulting from sapping (Figure 5). The slope dip was measured on the 285 

reference line and was compared with the original slope design in order to ensure that the slope’s 286 

geometry had not changed. Once the original geometry of the slope was known, the next step 287 

consisted of the measurement of the length of removed material (ܮ௥) and the weathered lithology 288 

 of a layer affected by different weathering patterns, until the bedrock was reached (Figure 289 (௪ܮ)

5). The sum of the removed (ܮ௥) and the number (n) of altered lengths (ܮ௪௜) of a stratum from a 290 

slope is defined as weathering profile length (WPL; Figure 5):  291 

ܮܹܲ ൌ ௥ܮ ൅ ௪ܮ ൌ ௥ܮ ൅ ∑ ௪௜ܮ
௡
௜ୀଵ   (1) 292 

And, consequently, the weathering rate (WR) may be calculated as: 293 

ܹܴ ൌ
ௐ௉௅

௧
ൌ

௅ೝା௅ೢ
௧

ൌ
௅ೝା∑ ௅ೢ೔

೙
೔సభ

௧
  (2) 294 

Where t is the age (in years) of the slope (time from its excavation to the present). 295 



11 
 

 296 

Figure 5. Methodology used for the measurement of the field weathering profile of a stratum. WPL: 297 
weathering profile length, Lr: length of removed material; Lwi: length of weathering corresponding to each 298 
weathering pattern.  299 

 300 

Figure 6 shows an example of the material excavated in a marly stratum in order to determine the 301 

weathering profile. 302 

 303 

Figure 6. Above: Weathering profile from a marly stratum. Below: Schematic weathering profile with the 304 
definition of the different weathering patterns (see Table 2 for a detailed description of the weathering 305 
patterns). 306 

 307 

4. Lithological and geomechanical characterization 308 

In this section the different lithologies in the study area are described and characterized in 309 

mineralogical and geomechanical terms.  310 

Firstly, the lithologies in the study area were identified and described in the field using a simplified 311 

geological classification (Geological Society of London 1977). Secondly, the mineralogy of the 312 

different lithologies was described using X-ray diffraction (XRD). The 132 samples analysed 313 
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contained (Table 4) calcite, dolomite (sometimes ferric dolomite), quartz (Qtz) and phyllosilicates 314 

(Phy). The phyllosilicate fraction was also analysed through oriented aggregate diffractograms, 315 

showing important contents of caolinite, illite and mica and trace evidence of smectite in some 316 

samples. 317 

The carbonate percentages derived from the X-ray diffractograms were also compared with those 318 

obtained using the Bernard calcimeter method (ASTM 2007) for 34 rock samples selected at 319 

random. A good agreement between the results was observed (mean difference of 5%). 320 

The geomechanical properties of the intact rock samples from the lithologies studied were 321 

obtained through mechanical tests, and their weathering properties observed and described in 322 

the field. As explained previously, mechanical strength was evaluated using the Is(50) index and 323 

the PLT (ISRM 1985). The results were grouped by lithologies and durability categories (Table 324 

4). Note that the different lithologies were also classified according to field criteria (ISRM 1981), 325 

allowing both the field and mechanical properties of the different lithologies to be related (Table 326 

4). 327 

It may be noted in Table 4 that some mineral content dispersion exists for the different lithologies. 328 

The differing mineral content conditions both the slake properties and the mechanical properties. 329 

Furthermore, anisotropy, which highly conditions the mechanical properties of the rock, was 330 

recognized from PLT tests for some specific lithologies. It is related with the sedimentary origin of 331 

the turbiditic lithologies which show a typical Bouma sequence and even lateral facies changes. 332 

A correlation between the total carbonate content, Cb (i.e. the sum of calcite and dolomite content) 333 

and the mechanical index Is(50) was observed (Figure 7 a). A correlation between the 334 

phyllosilicate content (Phy) and Is(50) (Figure 7 b) was also observed. Note that, although the 335 

calculated coefficients of determination (r2) for both correlations are 0.50 and 0.46, the p-values 336 

are lower than 0.01, which indicates that the correlations are statistically significant.  337 

The relationship shown in Figure 7, i.e. that rock strength increases directly proportional to the 338 

carbonatic content and inversely proportional to the phyllosilicate content, has been also 339 

recognized by other authors for similar carbonatic marls (e.g. Lamas et al. 2011). 340 

However, there was no clear relationship between the mineralogical composition of different 341 

lithologies and durability class to which they belonged. This fact was previously noted by Crosta 342 

(1998), who found a low correlation between durability index values and calcium carbonate 343 

content. This is probably due to the fact that rock parameters other than mineralogy, such as 344 

microscopic texture (Martínez-Bofill et al. 2004) or microfabric (Kaufhold et al. 2013), play a key 345 

role in this relationship. 346 



13 
 

 347 

 348 

Figure 7. Relationship between carbonate (Cb) a) and phyllosilicate (Phy) b) contents and Is(50). n is the 349 
number of samples tested. 350 
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The way in which the different lithologies weathered was studied in the field. To this end, the 351 

weathering horizon of each lithology stratum from slope surface to bedrock was studied by 352 

excavation. The weathering lengths were determined by measuring the length of removed 353 

material and the thicknesses of the different weathering patterns (Figure 5) from a reference line 354 

corresponding to the original slope surface. A total of 87 strata were studied in order to define 355 

their weathering patterns and profiles. The remaining strata (note that a total of 151 were tested 356 

in the laboratory) were used to validate the expected weathering patterns of the different 357 

lithologies in the field, checking only the most superficial layers. 358 

The weathering patterns are defined as follows (Table 2): Not weathered (NW); slight 359 

discoloration (A); reduction by arenization (B); flat weathering front peeling off (C); conchoidal 360 

peeling off (D); incipient rounding of blocks formed by tectonic joints (E); ellipsoidal morphology 361 

blocks formation (F); cubic centimetre fracturing of ellipsoidal block (G); incipient conchoidal 362 

fracture of ellipsoidal blocks and formation of ellipsoidal blocks of minor size (H); total conchoidal 363 

exfoliation of ellipsoidal blocks (I); massive fracturing in centimetric pseudocubic blocks (J); 364 

residual soil (K); centimetric rhomboidal fracturing in centimetric thickness strata (L); and massive 365 

fracturing of centimetric thickness strata (M). Table 2 summarizes, illustrates and describes in 366 

detail the different weathering patterns (from modes B to M) observed in the field. 367 

 368 

Table 2. Detailed description of the weathering patterns obtained from the excavation of 87 strata from the 369 
slope surface to the bedrock. 370 

Weatherin
g pattern 

Picture and schematic plot 

B. Reduction 
by 
arenization. 
Decompositio
n to sand 
through a 
process which 
causes the 
loss of 
permanent 
cohesive 
forces 
between the 
rock particles.  

C. Flat 
weathering 
front of 
millimetre to 
centimetre 
length. 
Peeling off 
and spalling. 
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D. Centimetric 
conchoidal 
peeling off. A 
one 
centimeter 
thick halo 
around the 
rock blocks is 
generated. 
The gradual 
peeling off 
penetrates 
inwards the 
not weathered 
rock mass. 

 

E. Incipient 
rounding of 
blocks mostly 
formed by 
tectonic 
planar joints 
and bedding. 
Occasional 
blocks of 
minor size. 

 

F. Ellipsoidal 
blocks with 
many 
intercalated 
minor size 
rounded 
blocks which 
partially mask 
the original 
joint sets. 

 

G. Cubic 
centimetre 
fracturing of 
ellipsoidal 
block. The 
original joint 
planes cannot 
be easily 
recognized. 

 

H. Incipient 
conchoidal 
fracture of 
ellipsoidal 
blocks and 
formation of 
ellipsoidal 
blocks of 
minor size. 
The original 
joint planes 
cannot be 
easily 
recognized. 
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I. Total 
concentric 
conchoidal 
exfoliation of 
ellipsoidal 
blocks. The 
original joint 
planes cannot 
be easily 
recognized. 

 

J. Massive 
fracturing in 
centimetric 
pseudocubic 
blocks of 
conchoidal 
blocks. The 
ellipsoidal 
geometry of 
the isolated 
blocks is 
preserved. 

K. Highly 
graduated 
residual soil. 
The original 
structure of 
the rock mass 
has been 
completely 
destroyed. 

 

L. Centimetric 
spacing 
rhomboidal 
fracturing in 
centimetric 
thickness 
strata with 
incipient 
fracturing of 
lower spacing.  

M. Massive 
rhomboidal 
fracturation of 
centimetric 
thickness 
strata which 
generate 
foliation of 
small sheets. 

  371 

As previously described, the addition of the removed (ܮ௥) and altered lengths (ܮ௪௜) of a stratum 372 

from a slope is defined as the weathering profile length (WPL) (Figure 2). This weathering profile 373 

is comprised of the sum of different weathering patterns (see Figure 5 and Table 2). In the field it 374 

was observed that weathering profiles depended on the lithological nature of the strata, although 375 

some lithologies exhibited similar weathering profiles (e.g. NW-A, AB, AC, AD, EFG, FHIJK, LM; 376 
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Table 4). The weathering lengths (expressed in centimetres) and rates (expressed in centimetres 377 

per year) were calculated from the slopes whose age (i.e. the time from their excavation to the 378 

present) was known and which had not suffered evident re-excavation, resloping and/or rockfall 379 

activity. Where any of these had occurred the length could not be measured, as the slope would 380 

have been altered by factors other than weathering over time.  381 

 382 

5. Determination of durability categories from slaking properties 383 

The first standardised durability classifications were based on one or two cycle slake indices 384 

(Franklin and Chandra 1972 and Gamble 1971). However, other researchers such as Nickmann 385 

et al. (2006), Sri-in and Fuenkajorn (2007), Fuenkajorn (2011) and Miščcević and Vlastelica 386 

(2011) considered slaking properties by using several slake cycles in order to distinguish between 387 

the different rock classes. In this study, similarly to Nickmann et al. (2006), Sri-in and Fuenkajorn 388 

(2007) and Fuenkajorn (2011), a classification system is proposed based on sample properties 389 

during several slake-cycles and a proposed Index of Weathering (IW5), which, together with the 390 

Id1 and Id5 indices allows the classification of rocks into ten different categories. IW5 is calculated 391 

from the Idi values obtained from five different cycles through the expression: 392 

ܫ ହܹ ൌ
ଵ

ହ
∑ ௜݀ܫ
௜ୀହ
௜ୀଵ          (3) 393 

Notice that IW5 represents the average Idi index for the five slake-cycles and thus is related to the 394 

mean properties throughout the five slaking cycles. This parameter, in conjunction with Id1 and 395 

Id5, is used to determine the durability category of the rock samples. Note that for the definition of 396 

these durability categories we have also considered the whole durability curve along five cycles 397 

because the morphology of the slaking curves shown in Figure 8 allows to better differentiate the 398 

distinct slaking behaviours. The parameters IW5, Id1 and Id5 (derived from the five-cycle tests 399 

performed on 151 samples, see Figure 8) allow different rock weathering properties to be 400 

distinguished, which can be split into ten different classes (Table 3) according to the Idi curve 401 

morphology (general trend, attenuation of mass lost, slope of the different segments, etc.).  402 
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 403 

Figure 8. Change in the slake durability index (Idi) of the 151 tested samples throughout five cycles. Each 404 
group of categories (W1 to W10) corresponds to a different Idi curve morphology and this is plotted in a 405 
different colour. 406 

 407 

Figure 9 shows the plot of Id1 versus Id5 values and the ten different categories (W1 to W10). 408 

Note that the 151 Flysch samples lie between the functions:  409 

 410 
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ହ݀ܫ ൌ ଵ݀ܫ1.73 െ 72.73           (4) 411 

ହ݀ܫ ൌ ଵ݀ܫ12.24 െ 1124        (5) 412 

 413 

It follows that the area of the plot located over the main diagonal (Id1=Id5) represents the zone 414 

with no possible Id1-Id5 combination values, because a point located in this area would have an 415 

Id5 value higher than or equal to Id1.  416 

 417 

 418 

Figure 9. Id1-Id5 plot of the 151 samples. W1 to W10 refers to the durability category of the rocks, as 419 
explained in Table 3. The number of samples in each durability category (W1 to W10) is shown in the plotted 420 
histogram. The slake properties observed for the different categories are shown in Figure 8. 421 

 422 

The different categories show very small range of IW5 values. High IW5 values correspond to 423 

extremely durable rocks. However, this range increases, mainly for the W4 category. The same 424 

trend can be observed for Id1 and Id2 defined intervals. The categories exhibit different weathering 425 

properties depending on the manner of degradation throughout the different cycles, and as a 426 
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consequence, under natural conditions, also depending on time. A detailed description of the 427 

different categories based on the Index of Weathering (IW5), the Id1 and Id5 values, the different 428 

properties throughout the slake cycles and the associated Flysch lithologies is shown in Table 3. 429 

Note that for the lithologies in each category the field-based strength value according to ISRM 430 

(1981) is included in the classification. 431 

 432 

Table 3. Classification of Flysch carbonate rocks into ten different classes based on the rock behaviour along 433 
five cycles of Slake Durability Test (Idi curve morphology, Figure 8) and the five-cycles Index of Weathering 434 
(IW5). The number of samples of each lithology is in square brackets. R0 to R6 represent rock strength 435 
according to ISRM (1981). 436 

Categories 
of 
durability 

Index of 
Weathering 
(IW5) 

Id1 Id5 Behaviour Lithologies 

W1 

Extremely 
good 

>99 >99 >98 
From an initial average loss of 
mass near 0.6% for the first 
slake-cycle the next indexes 
(Idi) vary approximately linearly 
with a drop between cycles 
near 0.3%. 

– Thick bedding calcarenites. 
Grainstone of turbiditic facies of 
channel (Ta-b). Very strong 
rocks, grade R5. [7] 

W2 

Very good 

97-99 95-99 95-98 
From an initial average loss of 
mass near 1.5% for the first 
slake-cycle the next indexes 
(Idi) vary approximately bi-
linearly with first-second and 
second-fifth cycle drops near 
0.8% and 0.5% respectively. 

– Slightly marly limestones 

(predominance). Strong rocks 
grade R4. [38] 

– Thin bedding calcarenites 
(Compact). Turbiditic thin beds 
of fan fringe facies (Tb-c-d). 
Strong rocks grade R4. [7] 

– Thin bedding calcarenites 
(Laminated). Turbiditic thin 
beds of fan fringe facies (Tb-c-
d). Strong rocks grade R4. [2] 

– Thick bedding calcarenites. 
Grainstone of turbiditic facies of 
channel (Ta-b) or sheet flood 
facies (Tb, Tb-c). Very strong to 
strong rocks, grades R5 to R4. 
[8] 

– Calcareous mélange. Strong 
rocks grade R4. [3] 

W3 

Good 

95-97 95-99 92-95 
From an initial average loss of 
mass near 2.0% for the first 
slake-cycle the next indexes 
(Idi) vary approximately bi-
linearly with first-second and 
second-fifth cycle drops near 
1.4% and 1.0% respectively. 

– Marly Limestones. Medium 
strong rocks grade R3. [6] 

– Thin bedding calcarenites 
(Compact). Turbiditic thin beds 
of fan fringe facies (Tb-c-d). 
Strong rocks grade R4. [2] 

– Thin bedding calcarenites 
(Laminated). Turbiditic thin 
beds of fan fringe facies (Tb-c-
d). Medium strong rocks grade 
R3. [2] 

– Silty marls. Medium strong 
rocks grade R3. [2] 

– Thick bedding calcarenites. 
Grainstone of turbiditic facies of 
sheet flood facies (Tb,Tb-c). 
Strong rocks grade R4. [1] 
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– Calcareous debrites. Strong 
rocks grade R4. [1] 

– Calcareous mélange. Strong 
rocks grade R4. [1] 

– Silty calcareous marls. Medium 
strong rocks grade R3. [1] 

 

 

 

 

 

 

 

W4 

Medium 

92-95 95-99 87-92 
From an initial average loss of 
mass near 3.1% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
bilinearly with first-fourth and 
fourth-fifth cycle drops near 
2.0% and 1.2% respectively. 

– Calcareous marls - Marls. [9] 

– Marly limestones [6]  

– Thin bedding calcarenites 
(Compact). Turbiditic thin beds 
of fan fringe facies (Tb-c-d). [1] 

– Thin bedding calcarenites 
(Laminated). Turbiditic thin 
beds of fan fringe facies (Tb-c-
d). [1] 

– Silty calcareous marls. [1] 

– Silty marls. [1] 

Medium strong rocks grade R3.  

W5 

Fair 

85-92 90-97 80-87 
From an initial average loss of 
mass near 5.0% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
bilinearly with first-fourth and 
fourth-fifth cycle drops near 
3.0% and 2.0% respectively. 

– Calcareous marls - Marls. [9] 

– Silty marls [3] 

– Silty calcareous marls. [2] 

– Thin bedding calcarenites 
(Compact). Turbiditic thin beds 
of fan fringe facies (Tb-c-d). [1] 

– Thin bedding calcarenites 
(Laminated). Turbiditic thin 
beds of fan fringe facies (Tb-c-
d). [1] 

– Thin bedding silty calcarenites 
[1] 

– Marly limestones [1] 

– Soft calcareous mélange [1]  

– Poorly cemented thick bedding 
calcarenites. Grainstone of 
turbiditic facies of channel (Ta-
b). [1] 

Medium strong to weak rocks, 
grades R3 to R2. 

W6 

Fair-poor 

80-85 90-95 70-80 
From an initial average loss of 
mass near 7.5% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
bilinearly with first-third and 
third-fifth cycle drops near 
5.2% and 3.4% respectively. 

 

– Calcareous marls - Marls. [9] 

– Sheet silty marls. [2] 

– Thin bedding calcarenites 
(Laminated). Turbiditic thin 
beds of fan fringe facies (Tb-c-
d). [2] 

– Thin bedding silty calcarenites 
[1] 
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Medium strong to weak rocks, 
grades R3 to R2.  

W7 

Poor 

70-80 80-90 55-70 
From an initial average loss of 
mass near 12.9% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
stepwise with first-second and 
fourth-fifth cycle drops near 
8.6% and 4.1% respectively. 

– Sheet silty marls. [3] 

– Calcareous marls - Marls. [2] 

– Poorly cemented thin bedding 
calcarenites. [1] 

Medium strong to weak rocks, 
grades R3 to R2. 

W8 

Very poor 

50-70 70-80 35-55 
From an initial average loss of 
mass near 24.3% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
stepwise presenting important 
cycle attenuations with first-
second and fourth-fifth cycle 
drops near 15.6% and 3.7% 
respectively. 

– Calcareous marls - Marls. [2] 

– Sheet silty marls. [1] 

– Poorly cemented thin bedding 
calcarenites. [1] 

Weak rocks to very weak rocks, 
grades R2 to R1. 

 

 

 

 

W9 

Extremely 
poor 

35-50 50-80 10-35 
From an initial average loss of 
mass near 28% for the first 
slake-cycle the next indexes 
(Idi) vary approximately 
stepwise presenting important 
cycle attenuations with first-
second and fourth-fifth cycle 
drops near 22.8% and 3.4% 
respectively. 

– Soft Marls. Very weak rocks 
grade R1. [3] 

W10 

Exception
ally poor 

<35 50-80 0-10 
From an initial average loss of 
mass near 30.0% for the first 
slake-cycle the next indexes 
(Idi) vary approximately linearly 
until the third cycle. From the 
third cycle there is important 
cycle attenuation with third-
fourth and fourth-fifth cycle 
drops near 11.0% and 5.0% 
respectively. 

– Sheet Marls. Very weak rocks 
grade R1. [2] 

 437 

It may be noted that the worst durability properties categories (i.e. W10, W9 and W8) were defined 438 

using a limited number of samples (see histogram in Figure 9). This is because in the study area, 439 

only a few samples of these rocks were present (Figures 8 and 9). However, the W2 category, 440 

which represents “Very good” quality samples, is well represented in the study area, with 58 441 

samples (Figures 8 and 9). For a more complete and detailed description of the slopes and 442 

samples refer to the raw data contained in Table A1, included as complementary material. 443 

 444 

6. Analysis and discussion 445 

A classification system based on the first and fifth slake-cycles of intact rock samples, Id1 and Id5, 446 

respectively and a defined index of weathering (IW5) is proposed, for use in characterizing the 447 

slaking properties of intact rocks. Ten different weathering classes (W1 to W10) that exhibit 448 

distinct degradation properties are defined. Moreover, the detailed field description of the different 449 
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Flysch lithologies, together with the mineralogical characterization of samples belonging to each 450 

stated class of weathering allowed the different durability categories to be related to the rock 451 

strength types (R1 to R6) suggested by the ISRM (1981) and point load strength (Is(50)) according 452 

ISRM (1985). It was noted that the field weathering properties of the different lithologies are 453 

related to their slaking properties. However, these weathering profiles can be associated with 454 

different lithologies. As a consequence, a certain durability category can exhibit different 455 

weathering profiles. However, each lithology presents a single weathering profile, regardless of 456 

its durability category (Table 4). Furthermore, it was observed that the weathering rate 457 

corresponding to a certain age and durability category (Wi) depends on the weathering profile 458 

(mainly for the more resistant categories) (Figure 10). This effect seems to be attenuated for older 459 

slopes, probably due to a plausible passivation of the weathering process resulting from the 460 

accumulation of decomposed rock. However, this topic will be the aim of future research which 461 

will be confirmed with new data.  462 

This is of great interest to field engineers and geologists because the weathering properties of 463 

the rocks can be easily predicted for preliminary planning purposes by recognizing the lithology 464 

and applying the criteria defined in Table 3. 465 

Attending to the results of the detailed analysis of the properties of the lithologies in the study 466 

area along five slake-cycles (Table 3) and comparing them with the real properties, some 467 

interesting conclusions may be drawn. The thick bedding calcarenites provided very high Id5 468 

values of over 97%, usually exhibiting “Extremely good” (W1) real weathering properties  and the 469 

weathering profile NW-A, or “Very good” (W2) and “Good” (W3) properties and the weathering 470 

profile AC. In all cases the weathering rate was lower than 1 mm/year for 5, 15, 20 and 40 year 471 

old slopes. 472 
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 473 

Figure 10. Variation of weathering rates as a function of the durability category for different weathering 474 
profiles and slope ages. : Standard deviation; Max.: Maximum value; Min. minimum value. 475 

  476 

The slightly marly limestones belonged to the W2 (“Very good”) category, exhibiting an EFG 477 

weathering profile and an average weathering rate of 3 cm/year for 15 year old slopes and 0,7 478 

cm/year for 40 year old slopes. The calcareous mélange presented an AC weathering profile and 479 

an average weathering rate of up to 0.3 and 2.1 cm/year for the W2 and W3 categories, 480 

respectively. There were two types of thin bedding calcarenites present, according to their 481 

macroscopic texture. The first type of bedding calcarenites were compact and exhibited an AC 482 

weathering profile, with a weathering rate lower than 1 cm/year independent of the age of the 483 

slope and its category (W2 to W5). However, the bedding calcarenites which presented a 484 

laminated texture showed an LM weathering profile and a weathering rate lower than 2 cm/year 485 
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for 40 year old slopes, regardless their category (W2 to W6). Calcareous debrites, which belonged 486 

to the W3 category, showed an AD weathering profile and an extremely low weathering rate 487 

(nearly nil). Marly limestones (categories W3 to W5) presented an EFG weathering profile. Their 488 

mean weathering rate was less than 2 cm/year for the older slopes (i.e. 40 year old slopes). Silty 489 

calcareous marls and silty marls belonged to the W3 to W5 durability categories. Although the 490 

former exhibited an FHIJK weathering profile and a weathering rate of up to 5 cm/year for 15 year 491 

old slopes. The latter presented an EFG weathering profile and an unknown weathering length 492 

and rate because the original slope surfaces where this lithology outcropped were unknown. 493 

Calcareous marls were dispersed into a wide range of durability categories. A trend was observed 494 

wherein the weathering rate increased with the durability category (9 cm/year for W6 and 10 495 

cm/year for W8) for the 5 year old slopes. However, for this lithology, all durability categories 496 

showed similar weathering properties, with average weathering rates of near 2 cm/year in the 497 

long-term (i.e. 40 years). Soft calcareous mélange and thin bedding silty calcarenites exhibited a 498 

similar durability categories (W5 and W6) and the same weathering profile (LM). The weathering 499 

rates for the W5 durability category were 3.7 and 1.8 cm/year for 15 and 40 years respectively. 500 

For W6 the rate was 9.4 cm/year for 5 years. Sheet silty marls presented a FHIJK weathering 501 

profile and durability categories W6 to W8, which corresponds to an average weathering rate for 502 

5 year old slopes of 8, 9 and 11 cm/year, respectively. 503 

The poorly cemented thick bedding calcarenites and the poorly cemented thin bedding 504 

calcarenites also exhibited the same weathering profile (AB). However, the poorly cemented thick 505 

calcarenites belonged to the W5 category and had an average weathering rate of 0.6 cm/year for 506 

20 year old slopes and the poorly cemented thin bedding calcarenites belonged to the W7 and 507 

W8 categories, with an average weathering rate of 6.4 cm/year for 5 year old slopes. The latter 508 

lithological groups identified in the field corresponded to soft marls and sheet marls which 509 

exhibited “Extremely poor” (W9) or “Exceptionally poor” (W10) properties, with Id5 from 0% to 510 

35%. These rocks, like those described above, can suffer very quick degradation processes that 511 

can be recognized even a few days after the excavation of slopes, with average weathering rates 512 

of 19 cm/year for 5 year old slopes (W9) and 12 cm/year for 15 year old slopes (W10). Both 513 

lithologies exhibited weathering profiles FHIJK. 514 

Note that the weathering rates presented in this study showed some dispersion, mainly due to 515 

the influence of different factors which can affect the weathering length and/or the acquisition of 516 

data in the field. For example, the geometric relationship between the slope and the bedding can 517 

favour the penetration of rainwater, the remobilization or accumulation of weathered materials 518 

and the occurrence of rockfalls which accelerate or slow the degradation processes, depending 519 

on the adopted values (Cano and Tomás 2013a). The steep or flat morphology of the slopes could 520 

be another reason for the material removal or accumulation on the slopes, respectively. The 521 

selection of the reference line (i.e. the line which defines the original slope geometry just after 522 

excavation) is also a key parameter in the determination of the weathering length. It is also 523 

important to highlight that the weathering rates change over time, probably due to the 524 
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accumulation of degraded material on the slope’s surface, which can have a passivating effect 525 

that reduces the rate of degradation. This fact can be clearly seen in calcareous marls with a W6 526 

durability category which exhibited a very high weathering rate during the 5 first years after 527 

excavation (9 cm/year), falling to 1.2 cm/year from 5 to 20 years and finally being reduced to 0.8 528 

cm/year between 20 and 40 years (Figure 11). This finding will be object of future research. 529 

Finally, note that the most resistant lithologies, both mechanically and against degradation, were 530 

less sensitive to IW5 than less resistant lithologies. This is because the parameter is derived from 531 

weathering lengths measured in the field. This fact is clearer for the older slopes (i.e. 40 years 532 

old).  However, the most marly lithologies, which exhibited an FHIJK weathering profile and a 533 

higher short and medium-term weathering rate showed a clear correlation with the IW5 index 534 

which was attenuated in the long-term. 535 

 536 

Figure 11. Variation of the weathering profile length (WPL) versus the slope age for a similar lithology and 537 
category of durability. : Standard deviation; Max.: Maximum value; Min. minimum value. 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 
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Table 4. Summarized weathering classification of the carbonatic Flysch lithologies of Alicante. Each lithology 547 
is associated with a particular weathering profile and different categories of durability. Additionally, 548 
mineralogy and rock strength are presented for each lithology. Moreover, each categories of durability is 549 
also associated with IW5, Id1 and Id5 indices and rock strength. 550 

 551 
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7. Conclusions 552 

The classification of rock durability based on Id1 (Franklin 1972) or Id2 (Gamble 1971) indices was 553 

proved to be inappropriate for predicting the natural degradation properties of carbonatic rocks 554 

from the Flysch of Alicante (Spain) or similar rocks. Additionally, in this study a new index (Index 555 

of weathering, IWi) calculated as the average of i slake-cycles (Idi) values is proposed jointly with 556 

Id1 and Id5 slake cycles for distinguishing different rock weathering properties.  557 

For the study area a five-cycle index of weathering (IW5) was proved to be adequate for 558 

distinguishing between the different weathering properties of Flysch lithologies observed in the 559 

field. As such, using the IW5 index and the Id1 and Id5 values, ten different weathering categories 560 

were defined (W1 to W10). Furthermore, the detailed description of the samples from the 561 

lithologies outcropping in the study area allowed a direct relationship to be established between 562 

the different lithologies, their slaking properties (W1 to W10 according to the proposed 563 

methodology) and their weathering profile and rate.    564 

The results shown in this study allow the prediction of the expected weathering pattern and rate 565 

of the different strata that outcrop in a slope from their geological and geomechanical 566 

characteristics. The identification of the lithology can be performed through a visual or, 567 

alternatively, mineralogical characterization and the mechanical properties derived from the field 568 

criteria stated by the ISRM (1981) or, alternatively, from Is(50). Finally the durability of the strata 569 

can be derived from the weathering index (IW5) defined in this paper which is obtained from testing 570 

intact rock samples. 571 

Because most of the instabilities affecting the cut-slopes and natural slopes in the areas which 572 

were studied are closely related to the degradation of marly lithologies (Cano and Tomás 2013b), 573 

this study allows the long-term weathering properties of carbonatic Flysch rock layers to be known 574 

when the excavation of a new slope is planned. Furthermore, the classification may be easily 575 

used and even adapted for similar heterogeneous rock masses and climatic conditions.  576 

 577 
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