26,481 research outputs found

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Designing a VM-level vertical scalability service in current cloud platforms: A new hope for wearable computers

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Public clouds are becoming ripe for enterprise adoption. Many companies, including large enterprises, are increasingly relying on public clouds as a substitute for, or a supplement to, their own computing infrastructures. On the other hand, cloud storage service has attracted over 625 million users. However, apart from the storage service, other cloud services, such as the computing service, have not yet attracted the end users’ interest for economic and technical reasons. Cloud service providers offers horizontal scalability to make their services scalable and economical for enterprises while it is still not economical for the individual users to use their computing services due to the lack of vertical scalability. Moreover, current virtualization technologies and operating systems, specifically the guest operating systems installed on virtual machines, do not support the concept of vertical scalability. In addition, network remote access protocols are meant to administer remote machines but they are unable to run the non-administrative tasks such as playing heavy games and watching high quality videos remotely in a way that makes the users feel as if they are sitting locally on their personal machines. On the other hand, the industry is yet unable to make efficient wearable computers a reality due to the limited size of the wearable devices, where it is infeasible to place efficient processors and big enough hard disks. This paper aims to highlight the need for the vertical scalability service and design the appropriate cloud, virtualization layer, and operating system services to incorporate vertical scalability in current cloud platforms in a way that will make it economically and technically efficient for the end users to use cloud virtual machines as if they are using their personal laptops. Through these services, the cloud takes wearable computing to the next stage and makes wearable computers a reality

    Experiments of posture estimation on vehicles using wearable acceleration sensors

    Full text link
    In this paper, we study methods to estimate drivers' posture in vehicles using acceleration data of wearable sensor and conduct a field test. Recently, sensor technologies have been progressed. Solutions of safety management to analyze vital data acquired from wearable sensor and judge work status are proposed. To prevent huge accidents, demands for safety management of bus and taxi are high. However, acceleration of vehicles is added to wearable sensor in vehicles, and there is no guarantee to estimate drivers' posture accurately. Therefore, in this paper, we study methods to estimate driving posture using acceleration data acquired from T-shirt type wearable sensor hitoe, conduct field tests and implement a sample application.Comment: 4 pages, 4 figures, The 3rd IEEE International Conference on Big Data Security on Cloud (BigDataSecurity 2017), pp.14-17, Beijing, May 201

    Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure

    Get PDF
    Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge

    Integration of Smart Wearable Devices and Cloud Computing in the Kenyan Public Health Care System

    Get PDF
    The utilization of smart wearable devices and cloud computing in the Kenyan public health care system will facilitate real-time patient monitoring and management. The shortage of certified healthcare professionals and the limited access to quality specialized care for individuals in remote settings has prompted the adoption of wearable devices and cloud computing strategies in Kenya. However, there lacks a clear framework design of integrating the technologies in the public health sector. This article evaluates the current status of healthcare systems in Kenya. It also investigates the existing mobile health and cloud computing services in the country while evaluating the main legal concerns inherent to the utilization of the technologies. The document further outlines a framework design for a mobile application named GB Health. The application incorporates cloud computing and smart wearable devices in the Kenyan public health care system. The design will enhance workflow and patient outcomes in the sector. Keywords: Smart wearable devices, cloud computing, GB Health DOI: 10.7176/IKM/11-4-04 Publication date:June 30th 2021
    • …
    corecore