284 research outputs found

    Learning multi-view neighborhood preserving projections

    Get PDF
    We address the problem of metric learning for multi-view data, namely the construction of embedding projections from data in different representations into a shared feature space, such that the Euclidean distance in this space provides a meaningful within-view as well as between-view similarity. Our motivation stems from the problem of cross-media retrieval tasks, where the availability of a joint Euclidean distance function is a prerequisite to allow fast, in particular hashing-based, nearest neighbor queries. We formulate an objective function that expresses the intuitive concept that matching samples are mapped closely together in the output space, whereas non-matching samples are pushed apart, no matter in which view they are available. The resulting optimization problem is not convex, but it can be decomposed explicitly into a convex and a concave part, thereby allowing efficient optimization using the convex-concave procedure. Experiments on an image retrieval task show that nearest-neighbor based cross-view retrieval is indeed possible, and the proposed technique improves the retrieval accuracy over baseline techniques

    Simple to Complex Cross-modal Learning to Rank

    Get PDF
    The heterogeneity-gap between different modalities brings a significant challenge to multimedia information retrieval. Some studies formalize the cross-modal retrieval tasks as a ranking problem and learn a shared multi-modal embedding space to measure the cross-modality similarity. However, previous methods often establish the shared embedding space based on linear mapping functions which might not be sophisticated enough to reveal more complicated inter-modal correspondences. Additionally, current studies assume that the rankings are of equal importance, and thus all rankings are used simultaneously, or a small number of rankings are selected randomly to train the embedding space at each iteration. Such strategies, however, always suffer from outliers as well as reduced generalization capability due to their lack of insightful understanding of procedure of human cognition. In this paper, we involve the self-paced learning theory with diversity into the cross-modal learning to rank and learn an optimal multi-modal embedding space based on non-linear mapping functions. This strategy enhances the model's robustness to outliers and achieves better generalization via training the model gradually from easy rankings by diverse queries to more complex ones. An efficient alternative algorithm is exploited to solve the proposed challenging problem with fast convergence in practice. Extensive experimental results on several benchmark datasets indicate that the proposed method achieves significant improvements over the state-of-the-arts in this literature.Comment: 14 pages; Accepted by Computer Vision and Image Understandin
    • …
    corecore