3 research outputs found

    Weakly-Unambiguous Parikh Automata and Their Link to Holonomic Series

    Get PDF
    We investigate the connection between properties of formal languages and properties of their generating series, with a focus on the class of holonomic power series. We first prove a strong version of a conjecture by Castiglione and Massazza: weakly-unambiguous Parikh automata are equivalent to unambiguous two-way reversal bounded counter machines, and their multivariate generating series are holonomic. We then show that the converse is not true: we construct a language whose generating series is algebraic (thus holonomic), but which is inherently weakly-ambiguous as a Parikh automata language. Finally, we prove an effective decidability result for the inclusion problem for weakly-unambiguous Parikh automata, and provide an upper-bound on its complexity

    Unboundedness Problems for Machines with Reversal-Bounded Counters

    Get PDF
    We consider a general class of decision problems concerning formal languages, called (one-dimensional) unboundedness predicates, for automata that feature reversal-bounded counters (RBCA). We show that each problem in this class reduces-non-deterministically in polynomial time to the same problem for just nite automata. We also show an analogous reduction for automata that have access to both a push- down stack and reversal-bounded counters (PRBCA). This allows us to answer several open questions: For example, we settle the complexity of deciding whether a given (P)RBCA language L is bounded, meaning whether there exist words w1, . . . , wn with L ⊆ w1∗ · · · wn∗ . For PRBCA, even decidability was open. Our methods also show that there is no language of a (P)RBCA of intermediate growth. Part of our proof is likely of independent interest: We show that one can translate an RBCA into a machine with Z-counters in logarithmic space
    corecore