137 research outputs found

    SW-VAE: Weakly Supervised Learn Disentangled Representation Via Latent Factor Swapping

    Full text link
    Representation disentanglement is an important goal of representation learning that benefits various downstream tasks. To achieve this goal, many unsupervised learning representation disentanglement approaches have been developed. However, the training process without utilizing any supervision signal have been proved to be inadequate for disentanglement representation learning. Therefore, we propose a novel weakly-supervised training approach, named as SW-VAE, which incorporates pairs of input observations as supervision signals by using the generative factors of datasets. Furthermore, we introduce strategies to gradually increase the learning difficulty during training to smooth the training process. As shown on several datasets, our model shows significant improvement over state-of-the-art (SOTA) methods on representation disentanglement tasks

    On the Transfer of Disentangled Representations in Realistic Settings

    Full text link
    Learning meaningful representations that disentangle the underlying structure of the data generating process is considered to be of key importance in machine learning. While disentangled representations were found to be useful for diverse tasks such as abstract reasoning and fair classification, their scalability and real-world impact remain questionable. We introduce a new high-resolution dataset with 1M simulated images and over 1,800 annotated real-world images of the same setup. In contrast to previous work, this new dataset exhibits correlations, a complex underlying structure, and allows to evaluate transfer to unseen simulated and real-world settings where the encoder i) remains in distribution or ii) is out of distribution. We propose new architectures in order to scale disentangled representation learning to realistic high-resolution settings and conduct a large-scale empirical study of disentangled representations on this dataset. We observe that disentanglement is a good predictor for out-of-distribution (OOD) task performance.Comment: Published at ICLR 202

    Disentangled Latent Spaces Facilitate Data-Driven Auxiliary Learning

    Full text link
    In deep learning, auxiliary objectives are often used to facilitate learning in situations where data is scarce, or the principal task is extremely complex. This idea is primarily inspired by the improved generalization capability induced by solving multiple tasks simultaneously, which leads to a more robust shared representation. Nevertheless, finding optimal auxiliary tasks that give rise to the desired improvement is a crucial problem that often requires hand-crafted solutions or expensive meta-learning approaches. In this paper, we propose a novel framework, dubbed Detaux, whereby a weakly supervised disentanglement procedure is used to discover new unrelated classification tasks and the associated labels that can be exploited with the principal task in any Multi-Task Learning (MTL) model. The disentanglement procedure works at a representation level, isolating a subspace related to the principal task, plus an arbitrary number of orthogonal subspaces. In the most disentangled subspaces, through a clustering procedure, we generate the additional classification tasks, and the associated labels become their representatives. Subsequently, the original data, the labels associated with the principal task, and the newly discovered ones can be fed into any MTL framework. Extensive validation on both synthetic and real data, along with various ablation studies, demonstrate promising results, revealing the potential in what has been, so far, an unexplored connection between learning disentangled representations and MTL. The code will be made publicly available upon acceptance.Comment: Under review in Pattern Recognition Letter

    C-Disentanglement: Discovering Causally-Independent Generative Factors under an Inductive Bias of Confounder

    Full text link
    Representation learning assumes that real-world data is generated by a few semantically meaningful generative factors (i.e., sources of variation) and aims to discover them in the latent space. These factors are expected to be causally disentangled, meaning that distinct factors are encoded into separate latent variables, and changes in one factor will not affect the values of the others. Compared to statistical independence, causal disentanglement allows more controllable data generation, improved robustness, and better generalization. However, most existing work assumes unconfoundedness in the discovery process, that there are no common causes to the generative factors and thus obtain only statistical independence. In this paper, we recognize the importance of modeling confounders in discovering causal generative factors. Unfortunately, such factors are not identifiable without proper inductive bias. We fill the gap by introducing a framework entitled Confounded-Disentanglement (C-Disentanglement), the first framework that explicitly introduces the inductive bias of confounder via labels from domain expertise. In addition, we accordingly propose an approach to sufficiently identify the causally disentangled factors under any inductive bias of the confounder. We conduct extensive experiments on both synthetic and real-world datasets. Our method demonstrates competitive results compared to various SOTA baselines in obtaining causally disentangled features and downstream tasks under domain shifts.Comment: accepted to Neurips 202

    Learning disentangled representations via product manifold projection

    Full text link
    We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations. Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds. This definition of disentanglement gives rise to a novel weakly-supervised algorithm for recovering the unknown explanatory factors behind the data. At training time, our algorithm only requires pairs of non i.i.d. data samples whose elements share at least one, possibly multidimensional, generative factor of variation. We require no knowledge on the nature of these transformations, and do not make any limiting assumption on the properties of each subspace. Our approach is easy to implement, and can be successfully applied to different kinds of data (from images to 3D surfaces) undergoing arbitrary transformations. In addition to standard synthetic benchmarks, we showcase our method in challenging real-world applications, where we compare favorably with the state of the art.Comment: 15 pages, 10 figure

    Flow Factorized Representation Learning

    Full text link
    A prominent goal of representation learning research is to achieve representations which are factorized in a useful manner with respect to the ground truth factors of variation. The fields of disentangled and equivariant representation learning have approached this ideal from a range of complimentary perspectives; however, to date, most approaches have proven to either be ill-specified or insufficiently flexible to effectively separate all realistic factors of interest in a learned latent space. In this work, we propose an alternative viewpoint on such structured representation learning which we call Flow Factorized Representation Learning, and demonstrate it to learn both more efficient and more usefully structured representations than existing frameworks. Specifically, we introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations. Each latent flow is generated by the gradient field of a learned potential following dynamic optimal transport. Our novel setup brings new understandings to both \textit{disentanglement} and \textit{equivariance}. We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models. Furthermore, we demonstrate that the transformations learned by our model are flexibly composable and can also extrapolate to new data, implying a degree of robustness and generalizability approaching the ultimate goal of usefully factorized representation learning.Comment: NeurIPS2

    CF-VAE: Causal Disentangled Representation Learning with VAE and Causal Flows

    Full text link
    Learning disentangled representations is important in representation learning, aiming to learn a low dimensional representation of data where each dimension corresponds to one underlying generative factor. Due to the possibility of causal relationships between generative factors, causal disentangled representation learning has received widespread attention. In this paper, we first propose new flows that can incorporate causal structure information into the model, called causal flows. Based on the variational autoencoders(VAE) commonly used in disentangled representation learning, we design a new model, CF-VAE, which enhances the disentanglement ability of the VAE encoder by utilizing the causal flows. By further introducing the supervision of ground-truth factors, we demonstrate the disentanglement identifiability of our model. Experimental results on both synthetic and real datasets show that CF-VAE can achieve causal disentanglement and perform intervention experiments. Moreover, CF-VAE exhibits outstanding performance on downstream tasks and has the potential to learn causal structure among factors.Comment: 12 pages, 7 figure
    corecore