1,400 research outputs found

    Weakly-Supervised Action Segmentation with Iterative Soft Boundary Assignment

    Full text link
    In this work, we address the task of weakly-supervised human action segmentation in long, untrimmed videos. Recent methods have relied on expensive learning models, such as Recurrent Neural Networks (RNN) and Hidden Markov Models (HMM). However, these methods suffer from expensive computational cost, thus are unable to be deployed in large scale. To overcome the limitations, the keys to our design are efficiency and scalability. We propose a novel action modeling framework, which consists of a new temporal convolutional network, named Temporal Convolutional Feature Pyramid Network (TCFPN), for predicting frame-wise action labels, and a novel training strategy for weakly-supervised sequence modeling, named Iterative Soft Boundary Assignment (ISBA), to align action sequences and update the network in an iterative fashion. The proposed framework is evaluated on two benchmark datasets, Breakfast and Hollywood Extended, with four different evaluation metrics. Extensive experimental results show that our methods achieve competitive or superior performance to state-of-the-art methods.Comment: CVPR 201

    Action Recognition from Single Timestamp Supervision in Untrimmed Videos

    Get PDF
    Recognising actions in videos relies on labelled supervision during training, typically the start and end times of each action instance. This supervision is not only subjective, but also expensive to acquire. Weak video-level supervision has been successfully exploited for recognition in untrimmed videos, however it is challenged when the number of different actions in training videos increases. We propose a method that is supervised by single timestamps located around each action instance, in untrimmed videos. We replace expensive action bounds with sampling distributions initialised from these timestamps. We then use the classifier's response to iteratively update the sampling distributions. We demonstrate that these distributions converge to the location and extent of discriminative action segments. We evaluate our method on three datasets for fine-grained recognition, with increasing number of different actions per video, and show that single timestamps offer a reasonable compromise between recognition performance and labelling effort, performing comparably to full temporal supervision. Our update method improves top-1 test accuracy by up to 5.4%. across the evaluated datasets.Comment: CVPR 201

    Temporal Action Segmentation: An Analysis of Modern Techniques

    Full text link
    Temporal action segmentation (TAS) in videos aims at densely identifying video frames in minutes-long videos with multiple action classes. As a long-range video understanding task, researchers have developed an extended collection of methods and examined their performance using various benchmarks. Despite the rapid growth of TAS techniques in recent years, no systematic survey has been conducted in these sectors. This survey analyzes and summarizes the most significant contributions and trends. In particular, we first examine the task definition, common benchmarks, types of supervision, and prevalent evaluation measures. In addition, we systematically investigate two essential techniques of this topic, i.e., frame representation and temporal modeling, which have been studied extensively in the literature. We then conduct a thorough review of existing TAS works categorized by their levels of supervision and conclude our survey by identifying and emphasizing several research gaps. In addition, we have curated a list of TAS resources, which is available at https://github.com/nus-cvml/awesome-temporal-action-segmentation.Comment: 19 pages, 9 figures, 8 table
    • …
    corecore