114 research outputs found

    Weakly Supervised Learning of Mid-Level Features with Beta-Bernoulli Process Restricted Boltzmann Machines

    Full text link

    Zero Shot Recognition with Unreliable Attributes

    Full text link
    In principle, zero-shot learning makes it possible to train a recognition model simply by specifying the category's attributes. For example, with classifiers for generic attributes like \emph{striped} and \emph{four-legged}, one can construct a classifier for the zebra category by enumerating which properties it possesses---even without providing zebra training images. In practice, however, the standard zero-shot paradigm suffers because attribute predictions in novel images are hard to get right. We propose a novel random forest approach to train zero-shot models that explicitly accounts for the unreliability of attribute predictions. By leveraging statistics about each attribute's error tendencies, our method obtains more robust discriminative models for the unseen classes. We further devise extensions to handle the few-shot scenario and unreliable attribute descriptions. On three datasets, we demonstrate the benefit for visual category learning with zero or few training examples, a critical domain for rare categories or categories defined on the fly.Comment: NIPS 201

    IST Austria Thesis

    Get PDF
    The human ability to recognize objects in complex scenes has driven research in the computer vision field over couple of decades. This thesis focuses on the object recognition task in images. That is, given the image, we want the computer system to be able to predict the class of the object that appears in the image. A recent successful attempt to bridge semantic understanding of the image perceived by humans and by computers uses attribute-based models. Attributes are semantic properties of the objects shared across different categories, which humans and computers can decide on. To explore the attribute-based models we take a statistical machine learning approach, and address two key learning challenges in view of object recognition task: learning augmented attributes as mid-level discriminative feature representation, and learning with attributes as privileged information. Our main contributions are parametric and non-parametric models and algorithms to solve these frameworks. In the parametric approach, we explore an autoencoder model combined with the large margin nearest neighbor principle for mid-level feature learning, and linear support vector machines for learning with privileged information. In the non-parametric approach, we propose a supervised Indian Buffet Process for automatic augmentation of semantic attributes, and explore the Gaussian Processes classification framework for learning with privileged information. A thorough experimental analysis shows the effectiveness of the proposed models in both parametric and non-parametric views

    Preference Modeling in Data-Driven Product Design: Application in Visual Aesthetics

    Full text link
    Creating a form that is attractive to the intended market audience is one of the greatest challenges in product development given the subjective nature of preference and heterogeneous market segments with potentially different product preferences. Accordingly, product designers use a variety of qualitative and quantitative research tools to assess product preferences across market segments, such as design theme clinics, focus groups, customer surveys, and design reviews; however, these tools are still limited due to their dependence on subjective judgment, and being time and resource intensive. In this dissertation, we focus on a key research question: how can we understand and predict more reliably the preference for a future product in heterogeneous markets, so that this understanding can inform designers' decision-making? We present a number of data-driven approaches to model product preference. Instead of depending on any subjective judgment from human, the proposed preference models investigate the mathematical patterns behind users’ choice and behavior. This allows a more objective translation of customers' perception and preference into analytical relations that can inform design decision-making. Moreover, these models are scalable in that they have the capacity to analyze large-scale data and model customer heterogeneity accurately across market segments. In particular, we use feature representation as an intermediate step in our preference model, so that we can not only increase the predictive accuracy of the model but also capture in-depth insight into customers' preference. We tested our data-driven approaches with applications in visual aesthetics preference. Our results show that the proposed approaches can obtain an objective measurement of aesthetic perception and preference for a given market segment. This measurement enables designers to reliably evaluate and predict the aesthetic appeal of their designs. We also quantify the relative importance of aesthetic attributes when both aesthetic attributes and functional attributes are considered by customers. This quantification has great utility in helping product designers and executives in design reviews and selection of designs. Moreover, we visualize the possible factors affecting customers' perception of product aesthetics and how these factors differ across different market segments. Those visualizations are incredibly important to designers as they relate physical design details to psychological customer reactions. The main contribution of this dissertation is to present purely data-driven approaches that enable designers to quantify and interpret more reliably the product preference. Methodological contributions include using modern probabilistic approaches and feature learning algorithms to quantitatively model the design process involving product aesthetics. These novel approaches can not only increase the predictive accuracy but also capture insights to inform design decision-making.PHDDesign ScienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145987/1/yanxinp_1.pd

    Learning generative models of mid-level structure in natural images

    Get PDF
    Natural images arise from complicated processes involving many factors of variation. They reflect the wealth of shapes and appearances of objects in our three-dimensional world, but they are also affected by factors such as distortions due to perspective, occlusions, and illumination, giving rise to structure with regularities at many different levels. Prior knowledge about these regularities and suitable representations that allow efficient reasoning about the properties of a visual scene are important for many image processing and computer vision tasks. This thesis focuses on models of image structure at intermediate levels of complexity as required, for instance, for image inpainting or segmentation. It aims at developing generative, probabilistic models of this kind of structure, and, in particular, at devising strategies for learning such models in a largely unsupervised manner from data. One hallmark of natural images is that they can often be decomposed into regions with very different visual characteristics. The main approach of this thesis is therefore to represent images in terms of regions that are characterized by their shapes and appearances, and an image is then composed from many such regions. We explore approaches to learn about the appearance of regions, to learn about region shapes, and ways to combine several regions to form a full image. To achieve this goal, we make use of some ideas for unsupervised learning developed in the literature on models of low-level image structure and in the “deep learning” literature. These models are used as building blocks of more structured model formulations that incorporate additional prior knowledge of how images are formed. The thesis makes the following contributions: Firstly, we investigate a popular, MRF based prior of natural image structure, the Field-of Experts, with respect to its ability to model image textures, and propose an extended formulation that is considerably more successful at this task. This formulation gives rise to a fully parametric, translation-invariant probabilistic generative model of image textures. We illustrate how this model can be used as a component of a more comprehensive model of images comprising multiple textured regions. Secondly, we develop a model of region shape. This work is an extension of the “Masked Restricted Boltzmann Machine” proposed by Le Roux et al. (2011) and it allows explicit reasoning about the independent shapes and relative depths of occluding objects. We develop an inference and unsupervised learning scheme and demonstrate how this shape model, in combination with the masked RBM gives rise to a good model of natural image patches. Finally, we demonstrate how this model of region shape can be extended to model shapes in large images. The result is a generative model of large images which are formed by composition from many small, partially overlapping and occluding objects

    Exploring QCD matter in extreme conditions with Machine Learning

    Full text link
    In recent years, machine learning has emerged as a powerful computational tool and novel problem-solving perspective for physics, offering new avenues for studying strongly interacting QCD matter properties under extreme conditions. This review article aims to provide an overview of the current state of this intersection of fields, focusing on the application of machine learning to theoretical studies in high energy nuclear physics. It covers diverse aspects, including heavy ion collisions, lattice field theory, and neutron stars, and discuss how machine learning can be used to explore and facilitate the physics goals of understanding QCD matter. The review also provides a commonality overview from a methodology perspective, from data-driven perspective to physics-driven perspective. We conclude by discussing the challenges and future prospects of machine learning applications in high energy nuclear physics, also underscoring the importance of incorporating physics priors into the purely data-driven learning toolbox. This review highlights the critical role of machine learning as a valuable computational paradigm for advancing physics exploration in high energy nuclear physics.Comment: 146 pages,53 figure

    Automatic Emotion Recognition: Quantifying Dynamics and Structure in Human Behavior.

    Full text link
    Emotion is a central part of human interaction, one that has a huge influence on its overall tone and outcome. Today's human-centered interactive technology can greatly benefit from automatic emotion recognition, as the extracted affective information can be used to measure, transmit, and respond to user needs. However, developing such systems is challenging due to the complexity of emotional expressions and their dynamics in terms of the inherent multimodality between audio and visual expressions, as well as the mixed factors of modulation that arise when a person speaks. To overcome these challenges, this thesis presents data-driven approaches that can quantify the underlying dynamics in audio-visual affective behavior. The first set of studies lay the foundation and central motivation of this thesis. We discover that it is crucial to model complex non-linear interactions between audio and visual emotion expressions, and that dynamic emotion patterns can be used in emotion recognition. Next, the understanding of the complex characteristics of emotion from the first set of studies leads us to examine multiple sources of modulation in audio-visual affective behavior. Specifically, we focus on how speech modulates facial displays of emotion. We develop a framework that uses speech signals which alter the temporal dynamics of individual facial regions to temporally segment and classify facial displays of emotion. Finally, we present methods to discover regions of emotionally salient events in a given audio-visual data. We demonstrate that different modalities, such as the upper face, lower face, and speech, express emotion with different timings and time scales, varying for each emotion type. We further extend this idea into another aspect of human behavior: human action events in videos. We show how transition patterns between events can be used for automatically segmenting and classifying action events. Our experimental results on audio-visual datasets show that the proposed systems not only improve performance, but also provide descriptions of how affective behaviors change over time. We conclude this dissertation with the future directions that will innovate three main research topics: machine adaptation for personalized technology, human-human interaction assistant systems, and human-centered multimedia content analysis.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133459/1/yelinkim_1.pd

    Deep Neural Networks and Tabular Data: Inference, Generation, and Explainability

    Get PDF
    Over the last decade, deep neural networks have enabled remarkable technological advancements, potentially transforming a wide range of aspects of our lives in the future. It is becoming increasingly common for deep-learning models to be used in a variety of situations in the modern life, ranging from search and recommendations to financial and healthcare solutions, and the number of applications utilizing deep neural networks is still on the rise. However, a lot of recent research efforts in deep learning have focused primarily on neural networks and domains in which they excel. This includes computer vision, audio processing, and natural language processing. It is a general tendency for data in these areas to be homogeneous, whereas heterogeneous tabular datasets have received relatively scant attention despite the fact that they are extremely prevalent. In fact, more than half of the datasets on the Google dataset platform are structured and can be represented in a tabular form. The first aim of this study is to provide a thoughtful and comprehensive analysis of deep neural networks' application to modeling and generating tabular data. Apart from that, an open-source performance benchmark on tabular data is presented, where we thoroughly compare over twenty machine and deep learning models on heterogeneous tabular datasets. The second contribution relates to synthetic tabular data generation. Inspired by their success in other homogeneous data modalities, deep generative models such as variational autoencoders and generative adversarial networks are also commonly applied for tabular data generation. However, the use of Transformer-based large language models (which are also generative) for tabular data generation have been received scant research attention. Our contribution to this literature consists of the development of a novel method for generating tabular data based on this family of autoregressive generative models that, on multiple challenging benchmarks, outperformed the current state-of-the-art methods for tabular data generation. Another crucial aspect for a deep-learning data system is that it needs to be reliable and trustworthy to gain broader acceptance in practice, especially in life-critical fields. One of the possible ways to bring trust into a data-driven system is to use explainable machine-learning methods. In spite of this, the current explanation methods often fail to provide robust explanations due to their high sensitivity to the hyperparameter selection or even changes of the random seed. Furthermore, most of these methods are based on feature-wise importance, ignoring the crucial relationship between variables in a sample. The third aim of this work is to address both of these issues by offering more robust and stable explanations, as well as taking into account the relationships between variables using a graph structure. In summary, this thesis made a significant contribution that touched many areas related to deep neural networks and heterogeneous tabular data as well as the usage of explainable machine learning methods
    • 

    corecore