1,437 research outputs found

    Discriminatively Trained Latent Ordinal Model for Video Classification

    Full text link
    We study the problem of video classification for facial analysis and human action recognition. We propose a novel weakly supervised learning method that models the video as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for "smile", running and jumping for "highjump"). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF -- it extends such frameworks to model the ordinal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations and on three challenging human action datasets. We also validate the method with qualitative results and show that they largely support the intuitions behind the method.Comment: Paper accepted in IEEE TPAMI. arXiv admin note: substantial text overlap with arXiv:1604.0150

    LOMo: Latent Ordinal Model for Facial Analysis in Videos

    Full text link
    We study the problem of facial analysis in videos. We propose a novel weakly supervised learning method that models the video event (expression, pain etc.) as a sequence of automatically mined, discriminative sub-events (eg. onset and offset phase for smile, brow lower and cheek raise for pain). The proposed model is inspired by the recent works on Multiple Instance Learning and latent SVM/HCRF- it extends such frameworks to model the ordinal or temporal aspect in the videos, approximately. We obtain consistent improvements over relevant competitive baselines on four challenging and publicly available video based facial analysis datasets for prediction of expression, clinical pain and intent in dyadic conversations. In combination with complimentary features, we report state-of-the-art results on these datasets.Comment: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR

    Weakly supervised coupled networks for visual sentiment analysis

    Get PDF
    Automatic assessment of sentiment from visual content has gained considerable attention with the increasing tendency of expressing opinions on-line. In this paper, we solve the problem of visual sentiment analysis using the high-level abstraction in the recognition process. Existing methods based on convolutional neural networks learn sentiment representations from the holistic image appearance. However, different image regions can have a different influence on the intended expression. This paper presents a weakly supervised coupled convolutional network with two branches to leverage the localized information. The first branch detects a sentiment specific soft map by training a fully convolutional network with the cross spatial pooling strategy, which only requires image-level labels, thereby significantly reducing the annotation burden. The second branch utilizes both the holistic and localized information by coupling the sentiment map with deep features for robust classification. We integrate the sentiment detection and classification branches into a unified deep framework and optimize the network in an end-to-end manner. Extensive experiments on six benchmark datasets demonstrate that the proposed method performs favorably against the state-ofthe- art methods for visual sentiment analysis

    Viraliency: Pooling Local Virality

    Get PDF
    In our overly-connected world, the automatic recognition of virality - the quality of an image or video to be rapidly and widely spread in social networks - is of crucial importance, and has recently awaken the interest of the computer vision community. Concurrently, recent progress in deep learning architectures showed that global pooling strategies allow the extraction of activation maps, which highlight the parts of the image most likely to contain instances of a certain class. We extend this concept by introducing a pooling layer that learns the size of the support area to be averaged: the learned top-N average (LENA) pooling. We hypothesize that the latent concepts (feature maps) describing virality may require such a rich pooling strategy. We assess the effectiveness of the LENA layer by appending it on top of a convolutional siamese architecture and evaluate its performance on the task of predicting and localizing virality. We report experiments on two publicly available datasets annotated for virality and show that our method outperforms state-of-the-art approaches.Comment: Accepted at IEEE CVPR 201

    Facial Action Unit Detection Using Attention and Relation Learning

    Full text link
    Attention mechanism has recently attracted increasing attentions in the field of facial action unit (AU) detection. By finding the region of interest of each AU with the attention mechanism, AU-related local features can be captured. Most of the existing attention based AU detection works use prior knowledge to predefine fixed attentions or refine the predefined attentions within a small range, which limits their capacity to model various AUs. In this paper, we propose an end-to-end deep learning based attention and relation learning framework for AU detection with only AU labels, which has not been explored before. In particular, multi-scale features shared by each AU are learned firstly, and then both channel-wise and spatial attentions are adaptively learned to select and extract AU-related local features. Moreover, pixel-level relations for AUs are further captured to refine spatial attentions so as to extract more relevant local features. Without changing the network architecture, our framework can be easily extended for AU intensity estimation. Extensive experiments show that our framework (i) soundly outperforms the state-of-the-art methods for both AU detection and AU intensity estimation on the challenging BP4D, DISFA, FERA 2015 and BP4D+ benchmarks, (ii) can adaptively capture the correlated regions of each AU, and (iii) also works well under severe occlusions and large poses.Comment: This paper is accepted by IEEE Transactions on Affective Computin
    corecore