244 research outputs found

    Weakly Supervised Intracranial Hemorrhage Segmentation using Head-Wise Gradient-Infused Self-Attention Maps from a Swin Transformer in Categorical Learning

    Full text link
    Intracranial hemorrhage (ICH) is a life-threatening medical emergency caused by various factors. Timely and precise diagnosis of ICH is crucial for administering effective treatment and improving patient survival rates. While deep learning techniques have emerged as the leading approach for medical image analysis and processing, the most commonly employed supervised learning often requires large, high-quality annotated datasets that can be costly to obtain, particularly for pixel/voxel-wise image segmentation. To address this challenge and facilitate ICH treatment decisions, we proposed a novel weakly supervised ICH segmentation method that leverages a hierarchical combination of head-wise gradient-infused self-attention maps obtained from a Swin transformer. The transformer is trained using an ICH classification task with categorical labels. To build and validate the proposed technique, we used two publicly available clinical CT datasets, namely RSNA 2019 Brain CT hemorrhage and PhysioNet. Additionally, we conducted an exploratory study comparing two learning strategies - binary classification and full ICH subtyping - to assess their impact on self-attention and our weakly supervised ICH segmentation framework. The proposed algorithm was compared against the popular U-Net with full supervision, as well as a similar weakly supervised approach using Grad-CAM for ICH segmentation. With a mean Dice score of 0.47, our technique achieved similar ICH segmentation performance as the U-Net and outperformed the Grad-CAM based approach, demonstrating the excellent potential of the proposed framework in challenging medical image segmentation tasks

    Weakly-supervised High-resolution Segmentation of Mammography Images for Breast Cancer Diagnosis

    Full text link
    In the last few years, deep learning classifiers have shown promising results in image-based medical diagnosis. However, interpreting the outputs of these models remains a challenge. In cancer diagnosis, interpretability can be achieved by localizing the region of the input image responsible for the output, i.e. the location of a lesion. Alternatively, segmentation or detection models can be trained with pixel-wise annotations indicating the locations of malignant lesions. Unfortunately, acquiring such labels is labor-intensive and requires medical expertise. To overcome this difficulty, weakly-supervised localization can be utilized. These methods allow neural network classifiers to output saliency maps highlighting the regions of the input most relevant to the classification task (e.g. malignant lesions in mammograms) using only image-level labels (e.g. whether the patient has cancer or not) during training. When applied to high-resolution images, existing methods produce low-resolution saliency maps. This is problematic in applications in which suspicious lesions are small in relation to the image size. In this work, we introduce a novel neural network architecture to perform weakly-supervised segmentation of high-resolution images. The proposed model selects regions of interest via coarse-level localization, and then performs fine-grained segmentation of those regions. We apply this model to breast cancer diagnosis with screening mammography, and validate it on a large clinically-realistic dataset. Measured by Dice similarity score, our approach outperforms existing methods by a large margin in terms of localization performance of benign and malignant lesions, relatively improving the performance by 39.6% and 20.0%, respectively. Code and the weights of some of the models are available at https://github.com/nyukat/GLAMComment: The last two authors contributed equally. Accepted to Medical Imaging with Deep Learning (MIDL) 202

    ResViT: Residual vision transformers for multi-modal medical image synthesis

    Full text link
    Multi-modal imaging is a key healthcare technology that is often underutilized due to costs associated with multiple separate scans. This limitation yields the need for synthesis of unacquired modalities from the subset of available modalities. In recent years, generative adversarial network (GAN) models with superior depiction of structural details have been established as state-of-the-art in numerous medical image synthesis tasks. GANs are characteristically based on convolutional neural network (CNN) backbones that perform local processing with compact filters. This inductive bias in turn compromises learning of contextual features. Here, we propose a novel generative adversarial approach for medical image synthesis, ResViT, to combine local precision of convolution operators with contextual sensitivity of vision transformers. ResViT employs a central bottleneck comprising novel aggregated residual transformer (ART) blocks that synergistically combine convolutional and transformer modules. Comprehensive demonstrations are performed for synthesizing missing sequences in multi-contrast MRI, and CT images from MRI. Our results indicate superiority of ResViT against competing methods in terms of qualitative observations and quantitative metrics

    Pattern classification approaches for breast cancer identification via MRI: stateā€ofā€theā€art and vision for the future

    Get PDF
    Mining algorithms for Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCEMRI) of breast tissue are discussed. The algorithms are based on recent advances in multidimensional signal processing and aim to advance current stateā€ofā€theā€art computerā€aided detection and analysis of breast tumours when these are observed at various states of development. The topics discussed include image feature extraction, information fusion using radiomics, multiā€parametric computerā€aided classification and diagnosis using information fusion of tensorial datasets as well as Clifford algebra based classification approaches and convolutional neural network deep learning methodologies. The discussion also extends to semiā€supervised deep learning and selfā€supervised strategies as well as generative adversarial networks and algorithms using generated confrontational learning approaches. In order to address the problem of weakly labelled tumour images, generative adversarial deep learning strategies are considered for the classification of different tumour types. The proposed data fusion approaches provide a novel Artificial Intelligence (AI) based framework for more robust image registration that can potentially advance the early identification of heterogeneous tumour types, even when the associated imaged organs are registered as separate entities embedded in more complex geometric spaces. Finally, the general structure of a highā€dimensional medical imaging analysis platform that is based on multiā€task detection and learning is proposed as a way forward. The proposed algorithm makes use of novel loss functions that form the building blocks for a generated confrontation learning methodology that can be used for tensorial DCEā€MRI. Since some of the approaches discussed are also based on timeā€lapse imaging, conclusions on the rate of proliferation of the disease can be made possible. The proposed framework can potentially reduce the costs associated with the interpretation of medical images by providing automated, faster and more consistent diagnosis
    • ā€¦
    corecore