335 research outputs found

    Quasirandomness in hypergraphs

    Get PDF
    An nn-vertex graph GG of edge density pp is considered to be quasirandom if it shares several important properties with the random graph G(n,p)G(n,p). A well-known theorem of Chung, Graham and Wilson states that many such `typical' properties are asymptotically equivalent and, thus, a graph GG possessing one such property automatically satisfies the others. In recent years, work in this area has focused on uncovering more quasirandom graph properties and on extending the known results to other discrete structures. In the context of hypergraphs, however, one may consider several different notions of quasirandomness. A complete description of these notions has been provided recently by Towsner, who proved several central equivalences using an analytic framework. We give short and purely combinatorial proofs of the main equivalences in Towsner's result.Comment: 19 page

    Perfect Packings in Quasirandom Hypergraphs II

    Full text link
    For each of the notions of hypergraph quasirandomness that have been studied, we identify a large class of hypergraphs F so that every quasirandom hypergraph H admits a perfect F-packing. An informal statement of a special case of our general result for 3-uniform hypergraphs is as follows. Fix an integer r >= 4 and 0<p<1. Suppose that H is an n-vertex triple system with r|n and the following two properties: * for every graph G with V(G)=V(H), at least p proportion of the triangles in G are also edges of H, * for every vertex x of H, the link graph of x is a quasirandom graph with density at least p. Then H has a perfect Kr(3)K_r^{(3)}-packing. Moreover, we show that neither hypotheses above can be weakened, so in this sense our result is tight. A similar conclusion for this special case can be proved by Keevash's hypergraph blowup lemma, with a slightly stronger hypothesis on H.Comment: 17 page

    Eigenvalues of Non-Regular Linear-Quasirandom Hypergraphs

    Full text link
    Chung, Graham, and Wilson proved that a graph is quasirandom if and only if there is a large gap between its first and second largest eigenvalue. Recently, the authors extended this characterization to k-uniform hypergraphs, but only for the so-called coregular k-uniform hypergraphs. In this paper, we extend this characterization to all k-uniform hypergraphs, not just the coregular ones. Specifically, we prove that if a k-uniform hypergraph satisfies the correct count of a specially defined four-cycle, then there is a gap between its first and second largest eigenvalue.Comment: 15 pages. (this paper was originally part of an old version of arXiv:1208.4863

    The Poset of Hypergraph Quasirandomness

    Full text link
    Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990's.Comment: 43 pages, 1 figur
    • …
    corecore