37 research outputs found

    A New Lower Bound for Deterministic Truthful Scheduling

    Full text link
    We study the problem of truthfully scheduling mm tasks to nn selfish unrelated machines, under the objective of makespan minimization, as was introduced in the seminal work of Nisan and Ronen [STOC'99]. Closing the current gap of [2.618,n][2.618,n] on the approximation ratio of deterministic truthful mechanisms is a notorious open problem in the field of algorithmic mechanism design. We provide the first such improvement in more than a decade, since the lower bounds of 2.4142.414 (for n=3n=3) and 2.6182.618 (for nn\to\infty) by Christodoulou et al. [SODA'07] and Koutsoupias and Vidali [MFCS'07], respectively. More specifically, we show that the currently best lower bound of 2.6182.618 can be achieved even for just n=4n=4 machines; for n=5n=5 we already get the first improvement, namely 2.7112.711; and allowing the number of machines to grow arbitrarily large we can get a lower bound of 2.7552.755.Comment: 15 page

    Randomized Revenue Monotone Mechanisms for Online Advertising

    Full text link
    Online advertising is the main source of revenue for many Internet firms. A central component of online advertising is the underlying mechanism that selects and prices the winning ads for a given ad slot. In this paper we study designing a mechanism for the Combinatorial Auction with Identical Items (CAII) in which we are interested in selling kk identical items to a group of bidders each demanding a certain number of items between 11 and kk. CAII generalizes important online advertising scenarios such as image-text and video-pod auctions [GK14]. In image-text auction we want to fill an advertising slot on a publisher's web page with either kk text-ads or a single image-ad and in video-pod auction we want to fill an advertising break of kk seconds with video-ads of possibly different durations. Our goal is to design truthful mechanisms that satisfy Revenue Monotonicity (RM). RM is a natural constraint which states that the revenue of a mechanism should not decrease if the number of participants increases or if a participant increases her bid. [GK14] showed that no deterministic RM mechanism can attain PoRM of less than ln(k)\ln(k) for CAII, i.e., no deterministic mechanism can attain more than 1ln(k)\frac{1}{\ln(k)} fraction of the maximum social welfare. [GK14] also design a mechanism with PoRM of O(ln2(k))O(\ln^2(k)) for CAII. In this paper, we seek to overcome the impossibility result of [GK14] for deterministic mechanisms by using the power of randomization. We show that by using randomization, one can attain a constant PoRM. In particular, we design a randomized RM mechanism with PoRM of 33 for CAII

    Characterization of revenue equivalence

    Get PDF
    The property of an allocation rule to be implementable in dominant strategies by a unique payment scheme is called \emph{revenue equivalence}. In this paper we give a characterization of revenue equivalence based on a graph theoretic interpretation of the incentive compatibility constraints. The characterization holds for any (possibly infinite) outcome space and many of the known results are immediate consequences. Moreover, revenue equivalence can be identified in cases where existing theorems are silent

    Interdependent Public Projects

    Full text link
    In the interdependent values (IDV) model introduced by Milgrom and Weber [1982], agents have private signals that capture their information about different social alternatives, and the valuation of every agent is a function of all agent signals. While interdependence has been mainly studied for auctions, it is extremely relevant for a large variety of social choice settings, including the canonical setting of public projects. The IDV model is very challenging relative to standard independent private values, and welfare guarantees have been achieved through two alternative conditions known as {\em single-crossing} and {\em submodularity over signals (SOS)}. In either case, the existing theory falls short of solving the public projects setting. Our contribution is twofold: (i) We give a workable characterization of truthfulness for IDV public projects for the largest class of valuations for which such a characterization exists, and term this class \emph{decomposable valuations}; (ii) We provide possibility and impossibility results for welfare approximation in public projects with SOS valuations. Our main impossibility result is that, in contrast to auctions, no universally truthful mechanism performs better for public projects with SOS valuations than choosing a project at random. Our main positive result applies to {\em excludable} public projects with SOS, for which we establish a constant factor approximation similar to auctions. Our results suggest that exclusion may be a key tool for achieving welfare guarantees in the IDV model

    Optimal Competitive Auctions

    Full text link
    We study the design of truthful auctions for selling identical items in unlimited supply (e.g., digital goods) to n unit demand buyers. This classic problem stands out from profit-maximizing auction design literature as it requires no probabilistic assumptions on buyers' valuations and employs the framework of competitive analysis. Our objective is to optimize the worst-case performance of an auction, measured by the ratio between a given benchmark and revenue generated by the auction. We establish a sufficient and necessary condition that characterizes competitive ratios for all monotone benchmarks. The characterization identifies the worst-case distribution of instances and reveals intrinsic relations between competitive ratios and benchmarks in the competitive analysis. With the characterization at hand, we show optimal competitive auctions for two natural benchmarks. The most well-studied benchmark F(2)()\mathcal{F}^{(2)}(\cdot) measures the envy-free optimal revenue where at least two buyers win. Goldberg et al. [13] showed a sequence of lower bounds on the competitive ratio for each number of buyers n. They conjectured that all these bounds are tight. We show that optimal competitive auctions match these bounds. Thus, we confirm the conjecture and settle a central open problem in the design of digital goods auctions. As one more application we examine another economically meaningful benchmark, which measures the optimal revenue across all limited-supply Vickrey auctions. We identify the optimal competitive ratios to be (nn1)n11(\frac{n}{n-1})^{n-1}-1 for each number of buyers n, that is e1e-1 as nn approaches infinity

    New bounds for truthful scheduling on two unrelated selfish machines

    Full text link
    We consider the minimum makespan problem for nn tasks and two unrelated parallel selfish machines. Let RnR_n be the best approximation ratio of randomized monotone scale-free algorithms. This class contains the most efficient algorithms known for truthful scheduling on two machines. We propose a new MinMaxMin-Max formulation for RnR_n, as well as upper and lower bounds on RnR_n based on this formulation. For the lower bound, we exploit pointwise approximations of cumulative distribution functions (CDFs). For the upper bound, we construct randomized algorithms using distributions with piecewise rational CDFs. Our method improves upon the existing bounds on RnR_n for small nn. In particular, we obtain almost tight bounds for n=2n=2 showing that R21.505996<106|R_2-1.505996|<10^{-6}.Comment: 28 pages, 3 tables, 1 figure. Theory Comput Syst (2019
    corecore