2,414 research outputs found

    A Nonsmooth Maximum Principle for Optimal Control Problems with State and Mixed Constraints-Convex Case

    Full text link
    Here we derive a nonsmooth maximum principle for optimal control problems with both state and mixed constraints. Crucial to our development is a convexity assumption on the "velocity set". The approach consists of applying known penalization techniques for state constraints together with recent results for mixed constrained problems.Comment: Published in 'Discrete and Continuous Dynamical Systems, Vol. 2011, pp. 174-18

    Lipschitzian Regularity of the Minimizing Trajectories for Nonlinear Optimal Control Problems

    Full text link
    We consider the Lagrange problem of optimal control with unrestricted controls and address the question: under what conditions we can assure optimal controls are bounded? This question is related to the one of Lipschitzian regularity of optimal trajectories, and the answer to it is crucial for closing the gap between the conditions arising in the existence theory and necessary optimality conditions. Rewriting the Lagrange problem in a parametric form, we obtain a relation between the applicability conditions of the Pontryagin maximum principle to the later problem and the Lipschitzian regularity conditions for the original problem. Under the standard hypotheses of coercivity of the existence theory, the conditions imply that the optimal controls are essentially bounded, assuring the applicability of the classical necessary optimality conditions like the Pontryagin maximum principle. The result extends previous Lipschitzian regularity results to cover optimal control problems with general nonlinear dynamics.Comment: This research was partially presented, as an oral communication, at the international conference EQUADIFF 10, Prague, August 27-31, 2001. Accepted for publication in the journal Mathematics of Control, Signals, and Systems (MCSS). See http://www.mat.ua.pt/delfim for other work

    Constrained Nonsmooth Problems of the Calculus of Variations

    Full text link
    The paper is devoted to an analysis of optimality conditions for nonsmooth multidimensional problems of the calculus of variations with various types of constraints, such as additional constraints at the boundary and isoperimetric constraints. To derive optimality conditions, we study generalised concepts of differentiability of nonsmooth functions called codifferentiability and quasidifferentiability. Under some natural and easily verifiable assumptions we prove that a nonsmooth integral functional defined on the Sobolev space is continuously codifferentiable and compute its codifferential and quasidifferential. Then we apply general optimality conditions for nonsmooth optimisation problems in Banach spaces to obtain optimality conditions for nonsmooth problems of the calculus of variations. Through a series of simple examples we demonstrate that our optimality conditions are sometimes better than existing ones in terms of various subdifferentials, in the sense that our optimality conditions can detect the non-optimality of a given point, when subdifferential-based optimality conditions fail to disqualify this point as non-optimal.Comment: A number of small mistakes and typos was corrected in the second version of the paper. Moreover, the paper was significantly shortened. Extended and improved versions of the deleted sections on nonsmooth Noether equations and nonsmooth variational problems with nonholonomic constraints will be published in separate submission
    corecore