2,224 research outputs found

    Random enriched trees with applications to random graphs

    Full text link
    We establish limit theorems that describe the asymptotic local and global geometric behaviour of random enriched trees considered up to symmetry. We apply these general results to random unlabelled weighted rooted graphs and uniform random unlabelled kk-trees that are rooted at a kk-clique of distinguishable vertices. For both models we establish a Gromov--Hausdorff scaling limit, a Benjamini--Schramm limit, and a local weak limit that describes the asymptotic shape near the fixed root

    Glauber Dynamics on Trees and Hyperbolic Graphs

    Get PDF
    We study continuous time Glauber dynamics for random configurations with local constraints (e.g. proper coloring, Ising and Potts models) on finite graphs with nn vertices and of bounded degree. We show that the relaxation time (defined as the reciprocal of the spectral gap λ1λ2|\lambda_1-\lambda_2|) for the dynamics on trees and on planar hyperbolic graphs, is polynomial in nn. For these hyperbolic graphs, this yields a general polynomial sampling algorithm for random configurations. We then show that if the relaxation time τ2\tau_2 satisfies τ2=O(1)\tau_2=O(1), then the correlation coefficient, and the mutual information, between any local function (which depends only on the configuration in a fixed window) and the boundary conditions, decays exponentially in the distance between the window and the boundary. For the Ising model on a regular tree, this condition is sharp.Comment: To appear in Probability Theory and Related Field

    Broadcasting on Random Directed Acyclic Graphs

    Full text link
    We study a generalization of the well-known model of broadcasting on trees. Consider a directed acyclic graph (DAG) with a unique source vertex XX, and suppose all other vertices have indegree d2d\geq 2. Let the vertices at distance kk from XX be called layer kk. At layer 00, XX is given a random bit. At layer k1k\geq 1, each vertex receives dd bits from its parents in layer k1k-1, which are transmitted along independent binary symmetric channel edges, and combines them using a dd-ary Boolean processing function. The goal is to reconstruct XX with probability of error bounded away from 1/21/2 using the values of all vertices at an arbitrarily deep layer. This question is closely related to models of reliable computation and storage, and information flow in biological networks. In this paper, we analyze randomly constructed DAGs, for which we show that broadcasting is only possible if the noise level is below a certain degree and function dependent critical threshold. For d3d\geq 3, and random DAGs with layer sizes Ω(logk)\Omega(\log k) and majority processing functions, we identify the critical threshold. For d=2d=2, we establish a similar result for NAND processing functions. We also prove a partial converse for odd d3d\geq 3 illustrating that the identified thresholds are impossible to improve by selecting different processing functions if the decoder is restricted to using a single vertex. Finally, for any noise level, we construct explicit DAGs (using expander graphs) with bounded degree and layer sizes Θ(logk)\Theta(\log k) admitting reconstruction. In particular, we show that such DAGs can be generated in deterministic quasi-polynomial time or randomized polylogarithmic time in the depth. These results portray a doubly-exponential advantage for storing a bit in DAGs compared to trees, where d=1d=1 but layer sizes must grow exponentially with depth in order to enable broadcasting.Comment: 33 pages, double column format. arXiv admin note: text overlap with arXiv:1803.0752

    Phase ordering after a deep quench: the stochastic Ising and hard core gas models on a tree

    Full text link
    Consider a low temperature stochastic Ising model in the phase coexistence regime with Markov semigroup PtP_t. A fundamental and still largely open problem is the understanding of the long time behavior of \d_\h P_t when the initial configuration \h is sampled from a highly disordered state ν\nu (e.g. a product Bernoulli measure or a high temperature Gibbs measure). Exploiting recent progresses in the analysis of the mixing time of Monte Carlo Markov chains for discrete spin models on a regular bb-ary tree \Tree^b, we tackle the above problem for the Ising and hard core gas (independent sets) models on \Tree^b. If ν\nu is a biased product Bernoulli law then, under various assumptions on the bias and on the thermodynamic parameters, we prove ν\nu-almost sure weak convergence of \d_\h P_t to an extremal Gibbs measure (pure phase) and show that the limit is approached at least as fast as a stretched exponential of the time tt. In the context of randomized algorithms and if one considers the Glauber dynamics on a large, finite tree, our results prove fast local relaxation to equilibrium on time scales much smaller than the true mixing time, provided that the starting point of the chain is not taken as the worst one but it is rather sampled from a suitable distribution.Comment: 35 page

    A law of the iterated logarithm for iterated random walks, with application to random recursive trees

    Full text link
    Consider a Crump-Mode-Jagers process generated by an increasing random walk whose increments have finite second moment. Let Yk(t)Y_k(t) be the number of individuals in generation kNk\in \mathbb N born in the time interval [0,t][0,t]. We prove a law of the iterated logarithm for Yk(t)Y_k(t) with fixed kk, as t+t\to +\infty. As a consequence, we derive a law of the iterated logarithm for the number of vertices at a fixed level kk in a random recursive tree, as the number of vertices goes to \infty.Comment: 16 page

    Decay of Correlations for the Hardcore Model on the dd-regular Random Graph

    Full text link
    A key insight from statistical physics about spin systems on random graphs is the central role played by Gibbs measures on trees. We determine the local weak limit of the hardcore model on random regular graphs asymptotically until just below its condensation threshold, showing that it converges in probability locally in a strong sense to the free boundary condition Gibbs measure on the tree. As a consequence we show that the reconstruction threshold on the random graph, indicative of the onset of point to set spatial correlations, is equal to the reconstruction threshold on the dd-regular tree for which we determine precise asymptotics. We expect that our methods will generalize to a wide range of spin systems for which the second moment method holds.Comment: 39 pages, 5 figures. arXiv admin note: text overlap with arXiv:1004.353

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Integrals of motion in the Many-Body localized phase

    Full text link
    We construct a complete set of quasi-local integrals of motion for the many-body localized phase of interacting fermions in a disordered potential. The integrals of motion can be chosen to have binary spectrum {0,1}\{0,1\}, thus constituting exact quasiparticle occupation number operators for the Fermi insulator. We map the problem onto a non-Hermitian hopping problem on a lattice in operator space. We show how the integrals of motion can be built, under certain approximations, as a convergent series in the interaction strength. An estimate of its radius of convergence is given, which also provides an estimate for the many-body localization-delocalization transition. Finally, we discuss how the properties of the operator expansion for the integrals of motion imply the presence or absence of a finite temperature transition.Comment: 65 pages, 12 figures. Corrected typos, added reference
    corecore