5 research outputs found

    A Novel Carrier Loop Based on Adaptive LM-QN Method in GNSS Receivers

    Get PDF
    A well-designed carrier tracking loop in a receiver of the Global Navigation Satellite System (GNSS) is the premise of accurate positioning and navigation in an aircraft-based surveying and mapping system. To deal with the problems of Doppler estimation in high-dynamic maneuvers, the interest on maximum-likelihood estimation (MLE) is increasing among the academic community. Levenberg-Marquardt (LM) method is usually regarded as an effective and promising approach to obtain the solution of MLE, but the computation of Hessian matrix loads a great burden on the algorithm. Besides, a poor performance on convergency in final iterations is the common failing of LM implementations. To solve these problems, an LM method based on Gauss-Newton and a Quasi-Newton (QN) method based on Hessian approximation are derived, making the computation cost of Hessian decline from O(N) to O(1). Then, on the basis of these two methods, a closed carrier loop with adaptive LM-QN algorithm is further proposed which can switch between LM and QN adaptively according to a damping parameter. Besides, an ideal LM with super-linear convergence (SLM) is constructed and proved as a reference of the convergence analysis. Finally, through the analyses and experiments using aircraft data, the improvements on computation cost and convergence are verified. Compared with scalar tracking and vector tracking, results indicate a magnitude increase in the precision of LM-QN loop, even though more computation counts are needed by LM-QN.Peer reviewe

    Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    No full text
    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions

    Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    No full text
    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions

    Weak and Dynamic GNSS Signal Tracking Strategies for Flight Missions in the Space Service Volume

    No full text
    Weak-signal and high-dynamics are of two primary concerns of space navigation using GNSS (Global Navigation Satellite System) in the space service volume (SSV). The paper firstly defines a reference assumption third-order phase-locked loop (PLL) as the baseline of an onboard GNSS receiver, and proves the incompetence of this conventional architecture. Then an adaptive four-state Kalman filter (KF)-based algorithm is introduced to realize the optimization of loop noise bandwidth, which can adaptively regulate its filter gain according to the received signal power and line-of-sight (LOS) dynamics. To overcome the matter of losing lock in weak-signal and high-dynamic environments, an open loop tracking strategy aided by an inertial navigation system (INS) is recommended, and the traditional maximum likelihood estimation (MLE) method is modified in a non-coherent way by reconstructing the likelihood cost function. Furthermore, a typical mission with combined orbital maneuvering and non-maneuvering arcs is taken as a destination object to test the two proposed strategies. Finally, the experiment based on computer simulation identifies the effectiveness of an adaptive four-state KF-based strategy under non-maneuvering conditions and the virtue of INS-assisted methods under maneuvering conditions
    corecore