768 research outputs found

    Improving Search through A3C Reinforcement Learning based Conversational Agent

    Full text link
    We develop a reinforcement learning based search assistant which can assist users through a set of actions and sequence of interactions to enable them realize their intent. Our approach caters to subjective search where the user is seeking digital assets such as images which is fundamentally different from the tasks which have objective and limited search modalities. Labeled conversational data is generally not available in such search tasks and training the agent through human interactions can be time consuming. We propose a stochastic virtual user which impersonates a real user and can be used to sample user behavior efficiently to train the agent which accelerates the bootstrapping of the agent. We develop A3C algorithm based context preserving architecture which enables the agent to provide contextual assistance to the user. We compare the A3C agent with Q-learning and evaluate its performance on average rewards and state values it obtains with the virtual user in validation episodes. Our experiments show that the agent learns to achieve higher rewards and better states.Comment: 17 pages, 7 figure

    Reinforcement Learning for Generative AI: State of the Art, Opportunities and Open Research Challenges

    Full text link
    Generative Artificial Intelligence (AI) is one of the most exciting developments in Computer Science of the last decade. At the same time, Reinforcement Learning (RL) has emerged as a very successful paradigm for a variety of machine learning tasks. In this survey, we discuss the state of the art, opportunities and open research questions in applying RL to generative AI. In particular, we will discuss three types of applications, namely, RL as an alternative way for generation without specified objectives; as a way for generating outputs while concurrently maximizing an objective function; and, finally, as a way of embedding desired characteristics, which cannot be easily captured by means of an objective function, into the generative process. We conclude the survey with an in-depth discussion of the opportunities and challenges in this fascinating emerging area.Comment: Published in JAIR at https://www.jair.org/index.php/jair/article/view/1527

    Causal-aware Safe Policy Improvement for Task-oriented dialogue

    Full text link
    The recent success of reinforcement learning's (RL) in solving complex tasks is most often attributed to its capacity to explore and exploit an environment where it has been trained. Sample efficiency is usually not an issue since cheap simulators are available to sample data on-policy. On the other hand, task oriented dialogues are usually learnt from offline data collected using human demonstrations. Collecting diverse demonstrations and annotating them is expensive. Unfortunately, use of RL methods trained on off-policy data are prone to issues of bias and generalization, which are further exacerbated by stochasticity in human response and non-markovian belief state of a dialogue management system. To this end, we propose a batch RL framework for task oriented dialogue policy learning: causal aware safe policy improvement (CASPI). This method gives guarantees on dialogue policy's performance and also learns to shape rewards according to intentions behind human responses, rather than just mimicking demonstration data; this couple with batch-RL helps overall with sample efficiency of the framework. We demonstrate the effectiveness of this framework on a dialogue-context-to-text Generation and end-to-end dialogue task of the Multiwoz2.0 dataset. The proposed method outperforms the current state of the art on these metrics, in both case. In the end-to-end case, our method trained only on 10\% of the data was able to out perform current state in three out of four evaluation metrics

    Adaptive Policy Learning for Offline-to-Online Reinforcement Learning

    Full text link
    Conventional reinforcement learning (RL) needs an environment to collect fresh data, which is impractical when online interactions are costly. Offline RL provides an alternative solution by directly learning from the previously collected dataset. However, it will yield unsatisfactory performance if the quality of the offline datasets is poor. In this paper, we consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online, and propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data. Specifically, we explicitly consider the difference between the online and offline data and apply an adaptive update scheme accordingly, that is, a pessimistic update strategy for the offline dataset and an optimistic/greedy update scheme for the online dataset. Such a simple and effective method provides a way to mix the offline and online RL and achieve the best of both worlds. We further provide two detailed algorithms for implementing the framework through embedding value or policy-based RL algorithms into it. Finally, we conduct extensive experiments on popular continuous control tasks, and results show that our algorithm can learn the expert policy with high sample efficiency even when the quality of offline dataset is poor, e.g., random dataset.Comment: AAAI202

    Reinforcement Learning for Generative AI: A Survey

    Full text link
    Deep Generative AI has been a long-standing essential topic in the machine learning community, which can impact a number of application areas like text generation and computer vision. The major paradigm to train a generative model is maximum likelihood estimation, which pushes the learner to capture and approximate the target data distribution by decreasing the divergence between the model distribution and the target distribution. This formulation successfully establishes the objective of generative tasks, while it is incapable of satisfying all the requirements that a user might expect from a generative model. Reinforcement learning, serving as a competitive option to inject new training signals by creating new objectives that exploit novel signals, has demonstrated its power and flexibility to incorporate human inductive bias from multiple angles, such as adversarial learning, hand-designed rules and learned reward model to build a performant model. Thereby, reinforcement learning has become a trending research field and has stretched the limits of generative AI in both model design and application. It is reasonable to summarize and conclude advances in recent years with a comprehensive review. Although there are surveys in different application areas recently, this survey aims to shed light on a high-level review that spans a range of application areas. We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications. Notably, we also surveyed the fast-developing large language model area. We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI
    corecore