6,382 research outputs found

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Graph analysis of functional brain networks: practical issues in translational neuroscience

    Full text link
    The brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires a know-how of all the methodological steps of the processing pipeline that manipulates the input brain signals and extract the functional network properties. On the other hand, a knowledge of the neural phenomenon under study is required to perform physiological-relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes

    Long-Term Dependence Characteristics of European Stock Indices

    Get PDF
    In this paper we show the degrees of persistence of the time series if eight European stock market indices are measured, after their lack of ergodicity and stationarity has been established. The proper identification of the nature of the persistence of financial time series forms a crucial step in deciding whether econometric modeling of such series might provide meaningful results. Testing for ergodicity and stationarity must be the first step in deciding whether the assumptions of numerous time series models are met. Our results indicate that ergodicity and stationarity are very difficult to establish in daily observations of these market indexes and thus various time-series models cannot be successfully identified. However, the measured degrees of persistence point to the existence of certain dependencies, most likely of a nonlinear nature, which, perhaps can be used in the identification of proper empirical econometric models of such dynamic time paths of the European stock market indexes. The paper computes and analyzes the long- term dependence of the equity index data as measured by global Hurst exponents, which are computed from wavelet multi-resolution analysis. For example, the FTSE turns out to be an ultra-efficient market with abnormally fast mean-reversion, faster than theoretically postulated by a Geometric Brownian Motion. Various methodologies appear to produce non-unique empirical measurement results and it is very difficult to obtain definite conclusions regarding the presence or absence of long term dependence phenomena like persistence or anti-persistence based on the global or homogeneous Hurst exponent. More powerful methods, such as the computation of the multifractal spectra of financial time series may be required. However, the visualization of the wavelet resonance coefficients and their power spectrograms in the form of localized scalograms and average scalegrams, forcefully assist with the detection and measurement of several nonlinear types of market price diffusion.Long-Term Dependence, European Stock Indices

    A Multiscale Pyramid Transform for Graph Signals

    Get PDF
    Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic geometric structure of the underlying graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure
    • 

    corecore