3,522 research outputs found

    Salient Regions for Query by Image Content

    No full text
    Much previous work on image retrieval has used global features such as colour and texture to describe the content of the image. However, these global features are insufficient to accurately describe the image content when different parts of the image have different characteristics. This paper discusses how this problem can be circumvented by using salient interest points and compares and contrasts an extension to previous work in which the concept of scale is incorporated into the selection of salient regions to select the areas of the image that are most interesting and generate local descriptors to describe the image characteristics in that region. The paper describes and contrasts two such salient region descriptors and compares them through their repeatability rate under a range of common image transforms. Finally, the paper goes on to investigate the performance of one of the salient region detectors in an image retrieval situation

    Efficient video indexing for monitoring disease activity and progression in the upper gastrointestinal tract

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. While the endoscopy video contains a wealth of information, tools to capture this information for the purpose of clinical reporting are rather poor. In date, endoscopists do not have any access to tools that enable them to browse the video data in an efficient and user friendly manner. Fast and reliable video retrieval methods could for example, allow them to review data from previous exams and therefore improve their ability to monitor disease progression. Deep learning provides new avenues of compressing and indexing video in an extremely efficient manner. In this study, we propose to use an autoencoder for efficient video compression and fast retrieval of video images. To boost the accuracy of video image retrieval and to address data variability like multi-modality and view-point changes, we propose the integration of a Siamese network. We demonstrate that our approach is competitive in retrieving images from 3 large scale videos of 3 different patients obtained against the query samples of their previous diagnosis. Quantitative validation shows that the combined approach yield an overall improvement of 5% and 8% over classical and variational autoencoders, respectively.Comment: Accepted at IEEE International Symposium on Biomedical Imaging (ISBI), 201

    MapSnapper: Engineering an Efficient Algorithm for Matching Images of Maps from Mobile Phones

    No full text
    The MapSnapper project aimed to develop a system for robust matching of low-quality images of a paper map taken from a mobile phone against a high quality digital raster representation of the same map. The paper presents a novel methodology for performing content-based image retrieval and object recognition from query images that have been degraded by noise and subjected to transformations through the imaging system. In addition the paper also provides an insight into the evaluation-driven development process that was used to incrementally improve the matching performance until the design specifications were met

    A Quaternionic Wavelet Transform-based Approach for Object Recognition

    Get PDF
    Recognizing the objects in complex natural scenes is the challenging task as the object may be occluded, may vary in shape, position and in size. In this paper a method to recognize objects from different categories of images using quaternionic wavelet transform (QWT) is presented. This transform separates the information contained in the image better than a traditional Discrete wavelet transform and provides a multiscale image analysis whose coefficients are 2D analytic, with one near-shift invariant magnitude and three phases. The two phases encode local image shifts and the third one contains texture information. In the domain of object recognition, it is often to classify objects from images that make only limited part of the image. Hence to identify local features and certain region of images, patches are extracted over the interest points detected from the original image using Wavelet based interest point detector. Here QWT magnitude and phase features are computed for every patch. Then these features are trained, tested and classified using SVM classifier in order to have supervised learning model. In order to compare the performance of local feature with global feature, the transform is applied to the entire image and the global features are derived. The performance of QWT is compared with discrete wavelet transform (DWT) and dual tree discrete wavelet transform (DTDWT). Observations revealed that QWT outperforms the DWT and shift invariant DTDWT with lesser equal error rate. The experimental evaluation is done using the complex Graz databases.Defence Science Journal, Vol. 64, No. 4, July 2014, pp. 350-357, DOI:http://dx.doi.org/10.14429/dsj.64.450

    Multiscale Discriminant Saliency for Visual Attention

    Full text link
    The bottom-up saliency, an early stage of humans' visual attention, can be considered as a binary classification problem between center and surround classes. Discriminant power of features for the classification is measured as mutual information between features and two classes distribution. The estimated discrepancy of two feature classes very much depends on considered scale levels; then, multi-scale structure and discriminant power are integrated by employing discrete wavelet features and Hidden markov tree (HMT). With wavelet coefficients and Hidden Markov Tree parameters, quad-tree like label structures are constructed and utilized in maximum a posterior probability (MAP) of hidden class variables at corresponding dyadic sub-squares. Then, saliency value for each dyadic square at each scale level is computed with discriminant power principle and the MAP. Finally, across multiple scales is integrated the final saliency map by an information maximization rule. Both standard quantitative tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating the proposed multiscale discriminant saliency method (MDIS) against the well-know information-based saliency method AIM on its Bruce Database wity eye-tracking data. Simulation results are presented and analyzed to verify the validity of MDIS as well as point out its disadvantages for further research direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio

    DC-image for real time compressed video matching

    Get PDF
    This chapter presents a suggested framework for video matching based on local features extracted from the DC-image of MPEG compressed videos, without full decompression. In addition, the relevant arguments and supporting evidences are discussed. Several local feature detectors will be examined to select the best for matching using the DC-image. Two experiments are carried to support the above. The first is comparing between the DC-image and I-frame, in terms of matching performance and computation complexity. The second experiment compares between using local features and global features regarding compressed video matching with respect to the DC-image. The results confirmed that the use of DC-image, despite its highly reduced size, it is promising as it produces higher matching precision, compared to the full I-frame. Also, SIFT, as a local feature, outperforms most of the standard global features. On the other hand, its computation complexity is relatively higher, but it is still within the real-time margin which leaves a space for further optimizations that can be done to improve this computation complexity
    corecore