35 research outputs found

    Kannada Character Recognition System A Review

    Full text link
    Intensive research has been done on optical character recognition ocr and a large number of articles have been published on this topic during the last few decades. Many commercial OCR systems are now available in the market, but most of these systems work for Roman, Chinese, Japanese and Arabic characters. There are no sufficient number of works on Indian language character recognition especially Kannada script among 12 major scripts in India. This paper presents a review of existing work on printed Kannada script and their results. The characteristics of Kannada script and Kannada Character Recognition System kcr are discussed in detail. Finally fusion at the classifier level is proposed to increase the recognition accuracy.Comment: 12 pages, 8 figure

    Handwritten OCR for Indic Scripts: A Comprehensive Overview of Machine Learning and Deep Learning Techniques

    Get PDF
    The potential uses of cursive optical character recognition, commonly known as OCR, in a number of industries, particularly document digitization, archiving, even language preservation, have attracted a lot of interest lately. In the framework of optical character recognition (OCR), the goal of this research is to provide a thorough understanding of both cutting-edge methods and the unique difficulties presented by Indic scripts. A thorough literature search was conducted in order to conduct this study, during which time relevant publications, conference proceedings, and scientific files were looked for up to the year 2023. As a consequence of the inclusion criteria that were developed to concentrate on studies only addressing Handwritten OCR on Indic scripts, 53 research publications were chosen as the process's outcome. The review provides a thorough analysis of the methodology and approaches employed in the chosen study. Deep neural networks, conventional feature-based methods, machine learning techniques, and hybrid systems have all been investigated as viable answers to the problem of effectively deciphering Indian scripts, because they are famously challenging to write. To operate, these systems require pre-processing techniques, segmentation schemes, and language models. The outcomes of this methodical examination demonstrate that despite the fact that Hand Scanning for Indic script has advanced significantly, room still exists for advancement. Future research could focus on developing trustworthy models that can handle a range of writing styles and enhance accuracy using less-studied Indic scripts. This profession may advance with the creation of collected datasets and defined standards

    Development of Features for Recognition of Handwritten Odia Characters

    Get PDF
    In this thesis, we propose four different schemes for recognition of handwritten atomic Odia characters which includes forty seven alphabets and ten numerals. Odia is the mother tongue of the state of Odisha in the republic of India. Optical character recognition (OCR) for many languages is quite matured and OCR systems are already available in industry standard but, for the Odia language OCR is still a challenging task. Further, the features described for other languages can’t be directly utilized for Odia character recognition for both printed and handwritten text. Thus, the prime thrust has been made to propose features and utilize a classifier to derive a significant recognition accuracy. Due to the non-availability of a handwritten Odia database for validation of the proposed schemes, we have collected samples from individuals to generate a database of large size through a digital note maker. The database consists of a total samples of 17, 100 (150 × 2 × 57) collected from 150 individuals at two different times for 57 characters. This database has been named Odia handwritten character set version 1.0 (OHCS v1.0) and is made available in http://nitrkl.ac.in/Academic/Academic_Centers/Centre_For_Computer_Vision.aspx for the use of researchers. The first scheme divides the contour of each character into thirty segments. Taking the centroid of the character as base point, three primary features length, angle, and chord-to-arc-ratio are extracted from each segment. Thus, there are 30 feature values for each primary attribute and a total of 90 feature points. A back propagation neural network has been employed for the recognition and performance comparisons are made with competent schemes. The second contribution falls in the line of feature reduction of the primary features derived in the earlier contribution. A fuzzy inference system has been employed to generate an aggregated feature vector of size 30 from 90 feature points which represent the most significant features for each character. For recognition, a six-state hidden Markov model (HMM) is employed for each character and as a consequence we have fifty-seven ergodic HMMs with six-states each. An accuracy of 84.5% has been achieved on our dataset. The third contribution involves selection of evidence which are the most informative local shape contour features. A dedicated distance metric namely, far_count is used in computation of the information gain values for possible segments of different lengths that are extracted from whole shape contour of a character. The segment, with highest information gain value is treated as the evidence and mapped to the corresponding class. An evidence dictionary is developed out of these evidence from all classes of characters and is used for testing purpose. An overall testing accuracy rate of 88% is obtained. The final contribution deals with the development of a hybrid feature derived from discrete wavelet transform (DWT) and discrete cosine transform (DCT). Experimentally it has been observed that a 3-level DWT decomposition with 72 DCT coefficients from each high-frequency components as features gives a testing accuracy of 86% in a neural classifier. The suggested features are studied in isolation and extensive simulations has been carried out along with other existing schemes using the same data set. Further, to study generalization behavior of proposed schemes, they are applied on English and Bangla handwritten datasets. The performance parameters like recognition rate and misclassification rate are computed and compared. Further, as we progress from one contribution to the other, the proposed scheme is compared with the earlier proposed schemes

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    A Modified Back Propagation Algorithm for Assyrian Optical Character Recognition Based on Moments

    Get PDF
    Character recognition has been very popular and interested area for researches, and it continues to be a challenging and impressive research topic due to its diverse applicable environment. The optical character recognition has been introduced as a fast and accurate method to convert both existing text images as well as large archives of existing paper documents to editable digital text format. However, existing optical character recognition algorithms suffer from flawed tradeoffs between accuracy and speed, making them less effective and impractical for large and complex documents. This paper describes a suggested method for Assyrian optical character recognition using modified back propagation artificial neural network based on moments. The experimental results show that the proposed method achieves higher recognition accuracy rate in compared with the standard algorithm

    Design of an Offline Handwriting Recognition System Tested on the Bangla and Korean Scripts

    Get PDF
    This dissertation presents a flexible and robust offline handwriting recognition system which is tested on the Bangla and Korean scripts. Offline handwriting recognition is one of the most challenging and yet to be solved problems in machine learning. While a few popular scripts (like Latin) have received a lot of attention, many other widely used scripts (like Bangla) have seen very little progress. Features such as connectedness and vowels structured as diacritics make it a challenging script to recognize. A simple and robust design for offline recognition is presented which not only works reliably, but also can be used for almost any alphabetic writing system. The framework has been rigorously tested for Bangla and demonstrated how it can be transformed to apply to other scripts through experiments on the Korean script whose two-dimensional arrangement of characters makes it a challenge to recognize. The base of this design is a character spotting network which detects the location of different script elements (such as characters, diacritics) from an unsegmented word image. A transcript is formed from the detected classes based on their corresponding location information. This is the first reported lexicon-free offline recognition system for Bangla and achieves a Character Recognition Accuracy (CRA) of 94.8%. This is also one of the most flexible architectures ever presented. Recognition of Korean was achieved with a 91.2% CRA. Also, a powerful technique of autonomous tagging was developed which can drastically reduce the effort of preparing a dataset for any script. The combination of the character spotting method and the autonomous tagging brings the entire offline recognition problem very close to a singular solution. Additionally, a database named the Boise State Bangla Handwriting Dataset was developed. This is one of the richest offline datasets currently available for Bangla and this has been made publicly accessible to accelerate the research progress. Many other tools were developed and experiments were conducted to more rigorously validate this framework by evaluating the method against external datasets (CMATERdb 1.1.1, Indic Word Dataset and REID2019: Early Indian Printed Documents). Offline handwriting recognition is an extremely promising technology and the outcome of this research moves the field significantly ahead

    A framework for ancient and machine-printed manuscripts categorization

    Get PDF
    Document image understanding (DIU) has attracted a lot of attention and became an of active fields of research. Although, the ultimate goal of DIU is extracting textual information of a document image, many steps are involved in a such a process such as categorization, segmentation and layout analysis. All of these steps are needed in order to obtain an accurate result from character recognition or word recognition of a document image. One of the important steps in DIU is document image categorization (DIC) that is needed in many situations such as document image written or printed in more than one script, font or language. This step provides useful information for recognition system and helps in reducing its error by allowing to incorporate a category-specific Optical Character Recognition (OCR) system or word recognition (WR) system. This research focuses on the problem of DIC in different categories of scripts, styles and languages and establishes a framework for flexible representation and feature extraction that can be adapted to many DIC problem. The current methods for DIC have many limitations and drawbacks that restrict the practical usage of these methods. We proposed an efficient framework for categorization of document image based on patch representation and Non-negative Matrix Factorization (NMF). This framework is flexible and can be adapted to different categorization problem. Many methods exist for script identification of document image but few of them addressed the problem in handwritten manuscripts and they have many limitations and drawbacks. Therefore, our first goal is to introduce a novel method for script identification of ancient manuscripts. The proposed method is based on patch representation in which the patches are extracted using skeleton map of a document images. This representation overcomes the limitation of the current methods about the fixed level of layout. The proposed feature extraction scheme based on Projective Non-negative Matrix Factorization (PNMF) is robust against noise and handwriting variation and can be used for different scripts. The proposed method has higher performance compared to state of the art methods and can be applied to different levels of layout. The current methods for font (style) identification are mostly proposed to be applied on machine-printed document image and many of them can only be used for a specific level of layout. Therefore, we proposed new method for font and style identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The images are represented by overlapping patches obtained from the foreground pixels. The position of these patches are set based on skeleton map to reduce the number of patches. Non-Negative Matrix Tri-Factorization is used to learn bases from each fonts (style) and then these bases are used to classify a new image based on minimum representation error. The proposed method can easily be extended to new fonts as the bases for each font are learned separately from the other fonts. This method is tested on two datasets of machine-printed and ancient manuscript and the results confirmed its performance compared to the state of the art methods. Finally, we proposed a novel method for language identification of printed and handwritten manuscripts based on patch representation and Non-negative Matrix Tri-Factorization (NMTF). The current methods for language identification are based on textual data obtained by OCR engine or images data through coding and comparing with textual data. The OCR based method needs lots of processing and the current image based method are not applicable to cursive scripts such as Arabic. In this work we introduced a new method for language identification of machine-printed and handwritten manuscripts based on patch representation and NMTF. The patch representation provides the component of the Arabic script (letters) that can not be extracted simply by segmentation methods. Then NMTF is used for dictionary learning and generating codebooks that will be used to represent document image with a histogram. The proposed method is tested on two datasets of machine-printed and handwritten manuscripts and compared to n-gram features (text-based), texture features and codebook features (imagebased) to validate the performance. The above proposed methods are robust against variation in handwritings, changes in the font (handwriting style) and presence of degradation and are flexible that can be used to various levels of layout (from a textline to paragraph). The methods in this research have been tested on datasets of handwritten and machine-printed manuscripts and compared to state-of-the-art methods. All of the evaluations show the efficiency, robustness and flexibility of the proposed methods for categorization of document image. As mentioned before the proposed strategies provide a framework for efficient and flexible representation and feature extraction for document image categorization. This frame work can be applied to different levels of layout, the information from different levels of layout can be merged and mixed and this framework can be extended to more complex situations and different tasks
    corecore