6,776 research outputs found

    Ultrafast all-optical switching by cross phase modulation induced wavelength conversion in silicon-on-insulator waveguides and ring resonators

    Get PDF
    We present new results on ultrafast alloptical wavelength conversion in Silicon-on-Insulator waveguides through cross phase modulation. We demonstrate sub-picosecond all-optical switching with 13dB on/off ratio by combining the nonlinear wavelength conversion in the port waveguide with passive filtering using an integrated SOI microring resonator.\u

    Ultrafast and bias-free all-optical wavelength conversion using III-V-on-silicon technology

    Get PDF
    Using a 7.5 μm diameter disk fabricated with III-V-on-silicon fabrication technology, we demonstrate bias-free all-optical wavelength conversion for non-return-to-zero on–off keyed pseudorandom bit sequence (PRBS) data at the speed of 10 Gbits/s with an extinction ratio of more than 12 dB. The working principle of such a wavelength converter is based on free-carrier-induced refractive index modulation in a pump–probe configuration. We believe it to be the first bias-free on-chip demonstration of all-optical wavelength conversion using PRBS data. All-optical gating measurements in the pump–probe configuration with the same device have revealed that it is possible to achieve wavelength conversion beyond 20 Gbits/s

    Coherent optical wavelength conversion via cavity-optomechanics

    Get PDF
    We theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi

    Four-wave mixing wavelength conversion efficiency in semiconductor traveling-wave amplifiers measured to 65 nm of wavelength shift

    Get PDF
    The efficiency of broadband optical wavelength conversion by four-wave mixing in semiconductor traveling-wave amplifiers is measured for wavelength shifts up to 65 nm using a tandem amplifier geometry. A quantity we call the relative conversion efficiency function, which determines the strength of the four-wave mixing nonlinearity, was extracted from the data. Using this quantity, gain requirements for lossless four-wave mixing wavelength conversion are calculated and discussed. Signal to background noise ratio is also measured and discussed in this study

    Wavelength conversion technology

    Get PDF

    Using tensor properties of four wave mixing in semiconductor optical amplifiers for polarization independent wavelength conversion or pump suppression

    Get PDF
    Summary form only given. Wavelength conversion by four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) has several advantages, including transparency to the modulation format and bit rate. An important feature of the intensity and polarization of the FWM wavelength-converted signal is their dependence on the polarizations of the input signal and pump waves. In this paper, we discuss the polarization properties of the FWM susceptibility χ_(ijkl) of strained multiple quantum well SOAs and their potential for application to polarization-independent wavelength conversion and pump suppression

    Wavelength conversion for WDM communication systems using four-wavemixing in semiconductor optical amplifiers

    Get PDF
    Four-wave mixing (FWM) in semiconductor optical amplifiers is an attractive mechanism for wavelength conversion in wavelength-division multiplexed (WDM) systems since it provides modulation format and bit rate transparency over wide tuning ranges. A series of systems experiments evaluating several aspects of the performance of these devices at bit rates of 2.5 and 10 Gb/s are presented. Included are single-channel conversion over 18 nm of shift at 10 Gb/s, multichannel conversion, and cascaded conversions. In addition time resolved spectral analysis of wavelength conversion is presented

    All-optical wavelength conversion using mode switching in InP microdisc laser

    Get PDF
    Wavelength conversion using an indium phosphide based microdisc laser (MDL) heterogeneously integrated on a silicon-on-insulator waveguide is reported. Several lasing modes are present within the disc cavity, between which wavelength conversion can be performed by mode switching and spectral filtering. For the first time, low-power wavelength up- and downconversion using one single MDL is demonstrated. Operation with a bit error rate below 10(-9) at 2.5 Gbit/s and operation below the forward-error-correction limit of 10(-3) at 10 Gbit/s are shown without the use of additional seeding beams

    Optical wavelength conversion of quantum states with optomechanics

    Full text link
    An optomechanical interface that converts quantum states between optical fields with distinct wavelengths is proposed. A mechanical mode couples to two optical modes via radiation pressure and mediates the quantum state mapping between the two optical modes. A sequence of optomechanical π/2\pi/2 pulses enables state-swapping between optical and mechanical states as well as the cooling of the mechanical mode. Theoretical analysis shows that high fidelity conversion can be realized for states with small photon numbers in systems with experimentally achievable parameters. The pulsed conversion process also makes it possible to maintain high conversion fidelity at elevated bath temperatures.Comment: 4 pages, 4 figures, Fig. 4 looks weird (possible latex style problem
    corecore