12 research outputs found

    Properties of spatial coupling in compressed sensing

    Full text link
    In this paper we address a series of open questions about the construction of spatially coupled measurement matrices in compressed sensing. For hardware implementations one is forced to depart from the limiting regime of parameters in which the proofs of the so-called threshold saturation work. We investigate quantitatively the behavior under finite coupling range, the dependence on the shape of the coupling interaction, and optimization of the so-called seed to minimize distance from optimality. Our analysis explains some of the properties observed empirically in previous works and provides new insight on spatially coupled compressed sensing.Comment: 5 pages, 6 figure

    The Space of Solutions of Coupled XORSAT Formulae

    Full text link
    The XOR-satisfiability (XORSAT) problem deals with a system of nn Boolean variables and mm clauses. Each clause is a linear Boolean equation (XOR) of a subset of the variables. A KK-clause is a clause involving KK distinct variables. In the random KK-XORSAT problem a formula is created by choosing mm KK-clauses uniformly at random from the set of all possible clauses on nn variables. The set of solutions of a random formula exhibits various geometrical transitions as the ratio mn\frac{m}{n} varies. We consider a {\em coupled} KK-XORSAT ensemble, consisting of a chain of random XORSAT models that are spatially coupled across a finite window along the chain direction. We observe that the threshold saturation phenomenon takes place for this ensemble and we characterize various properties of the space of solutions of such coupled formulae.Comment: Submitted to ISIT 201

    On the Convergence Speed of Spatially Coupled LDPC Ensembles

    Get PDF
    Spatially coupled low-density parity-check codes show an outstanding performance under the low-complexity belief propagation (BP) decoding algorithm. They exhibit a peculiar convergence phenomenon above the BP threshold of the underlying non-coupled ensemble, with a wave-like convergence propagating through the spatial dimension of the graph, allowing to approach the MAP threshold. We focus on this particularly interesting regime in between the BP and MAP thresholds. On the binary erasure channel, it has been proved that the information propagates with a constant speed toward the successful decoding solution. We derive an upper bound on the propagation speed, only depending on the basic parameters of the spatially coupled code ensemble such as degree distribution and the coupling factor ww. We illustrate the convergence speed of different code ensembles by simulation results, and show how optimizing degree profiles helps to speed up the convergence.Comment: 11 pages, 6 figure

    A Simple Proof of Maxwell Saturation for Coupled Scalar Recursions

    Full text link
    Low-density parity-check (LDPC) convolutional codes (or spatially-coupled codes) were recently shown to approach capacity on the binary erasure channel (BEC) and binary-input memoryless symmetric channels. The mechanism behind this spectacular performance is now called threshold saturation via spatial coupling. This new phenomenon is characterized by the belief-propagation threshold of the spatially-coupled ensemble increasing to an intrinsic noise threshold defined by the uncoupled system. In this paper, we present a simple proof of threshold saturation that applies to a wide class of coupled scalar recursions. Our approach is based on constructing potential functions for both the coupled and uncoupled recursions. Our results actually show that the fixed point of the coupled recursion is essentially determined by the minimum of the uncoupled potential function and we refer to this phenomenon as Maxwell saturation. A variety of examples are considered including the density-evolution equations for: irregular LDPC codes on the BEC, irregular low-density generator matrix codes on the BEC, a class of generalized LDPC codes with BCH component codes, the joint iterative decoding of LDPC codes on intersymbol-interference channels with erasure noise, and the compressed sensing of random vectors with i.i.d. components.Comment: This article is an extended journal version of arXiv:1204.5703 and has now been accepted to the IEEE Transactions on Information Theory. This version adds additional explanation for some details and also corrects a number of small typo

    Dynamics and termination cost of spatially coupled mean-field models

    Full text link
    This work is motivated by recent progress in information theory and signal processing where the so-called `spatially coupled' design of systems leads to considerably better performance. We address relevant open questions about spatially coupled systems through the study of a simple Ising model. In particular, we consider a chain of Curie-Weiss models that are coupled by interactions up to a certain range. Indeed, it is well known that the pure (uncoupled) Curie-Weiss model undergoes a first order phase transition driven by the magnetic field, and furthermore, in the spinodal region such systems are unable to reach equilibrium in sub-exponential time if initialized in the metastable state. By contrast, the spatially coupled system is, instead, able to reach the equilibrium even when initialized to the metastable state. The equilibrium phase propagates along the chain in the form of a travelling wave. Here we study the speed of the wave-front and the so-called `termination cost'--- \textit{i.e.}, the conditions necessary for the propagation to occur. We reach several interesting conclusions about optimization of the speed and the cost.Comment: 12 pages, 11 figure
    corecore