672,287 research outputs found
Evidence of a saturated gravity-wave spectrum throughout the atmosphere
The view adapted here is that the dominant mesoscale motions are due to internal gravity waves and show that previous and new vertical wave number spectra of horizontal winds are consistent with the notion of a saturation limit on wave amplitudes. It is also proposed that, at any height, only those vertical wave numbers m less than m sub asterisk are at saturation amplitudes, where m sub asterisk is the vertical wave number of the dominant energy-containing scale. Wave numbers m less than m sub asterisk are unsaturated, but experience growth with height due to the decrease of atmospheric density. The result is a saturated spectrum of gravity waves with both m sub asterisk decreasing and wave energy increasing with height. This saturation theory is consistent with a variety of atmospheric spectral observations and provides a basis for the notion of a universal spectrum of atmospheric gravity waves
Nearshore wave forecasting and hindcasting by dynamical and statistical downscaling
A high-resolution nested WAM/SWAN wave model suite aimed at rapidly
establishing nearshore wave forecasts as well as a climatology and return
values of the local wave conditions with Rapid Enviromental Assessment (REA) in
mind is described. The system is targeted at regions where local wave growth
and partial exposure to complex open-ocean wave conditions makes diagnostic
wave modelling difficult.
SWAN is set up on 500 m resolution and is nested in a 10 km version of WAM. A
model integration of more than one year is carried out to map the spatial
distribution of the wave field. The model correlates well with wave buoy
observations (0.96) but overestimates the wave height somewhat (18%, bias 0.29
m).
To estimate wave height return values a much longer time series is required
and running SWAN for such a period is unrealistic in a REA setting. Instead we
establish a direction-dependent transfer function between an already existing
coarse open-ocean hindcast dataset and the high-resolution nested SWAN model.
Return values are estimated using ensemble estimates of two different
extreme-value distributions based on the full 52 years of statistically
downscaled hindcast data. We find good agreement between downscaled wave height
and wave buoy observations. The cost of generating the statistically downscaled
hindcast time series is negligible and can be redone for arbitrary locations
within the SWAN domain, although the sectors must be carefully chosen for each
new location.
The method is found to be well suited to rapidly providing detailed wave
forecasts as well as hindcasts and return values estimates of partly sheltered
coastal regions.Comment: 20 pages, 7 figures and 2 tables, MREA07 special issue on Marine
rapid environmental assessmen
Orthogonality catastrophe and shock waves in a non-equilibrium Fermi gas
A semiclassical wave-packet propagating in a dissipationless Fermi gas
inevitably enters a "gradient catastrophe" regime, where an initially smooth
front develops large gradients and undergoes a dramatic shock wave phenomenon.
The non-linear effects in electronic transport are due to the curvature of the
electronic spectrum at the Fermi surface. They can be probed by a sudden
switching of a local potential. In equilibrium, this process produces a large
number of particle-hole pairs, a phenomenon closely related to the
Orthogonality Catastrophe. We study a generalization of this phenomenon to the
non-equilibrium regime and show how the Orthogonality Catastrophe cures the
Gradient Catastrophe, providing a dispersive regularization mechanism. We show
that a wave packet overturns and collapses into modulated oscillations with the
wave vector determined by the height of the initial wave. The oscillations
occupy a growing region extending forward with velocity proportional to the
initial height of the packet. We derive a fundamental equation for the
transition rates (MKP-equation) and solve it by means of the Whitham modulation
theory.Comment: 5 pages, 1 figure, revtex4, pr
Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary
To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).
Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the Voluntary Observing Ship data
This paper analyses secular changes and interannual variability in the wind wave, swell, and significant wave height (SWH) characteristics over the North Atlantic and North Pacific on the basis of wind wave climatology derived from the visual wave observations of voluntary observing ship (VOS) officers. These data are available from the International Comprehensive Ocean–Atmosphere Data Set (ICOADS) collection of surface meteorological observations for 1958–2002, but require much more complicated preprocessing than standard meteorological variables such as sea level pressure, temperature, and wind. Visual VOS data allow for separate analysis of changes in wind sea and swell, as well as in significant wave height, which has been derived from wind sea and swell estimates. In both North Atlantic and North Pacific midlatitudes winter significant wave height shows a secular increase from 10 to 40 cm decade−1 during the last 45 yr. However, in the North Atlantic the patterns of trend changes for wind sea and swell are quite different from each other, showing opposite signs of changes in the northeast Atlantic. Trend patterns of wind sea, swell, and SWH in the North Pacific are more consistent with each other. Qualitatively the same conclusions hold for the analysis of interannual variability whose leading modes demonstrate noticeable differences for wind sea and swell. Statistical analysis shows that variability in wind sea is closely associated with the local wind speed, while swell changes can be driven by the variations in the cyclone counts, implying the importance of forcing frequency for the resulting changes in significant wave height. This mechanism of differences in variability patterns of wind sea and swell is likely more realistic than the northeastward propagation of swells from the regions from which the wind sea signal originates
- …
