603,426 research outputs found

    Shock wave diffraction phenomena around slotted splitters

    Get PDF
    In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement

    Critical phenomena of collapsing massless scalar wave packets

    Full text link
    An analytical model that represents the collapse of a massless scalar wave packet with continuous self-similarity is constructed, and critical phenomena are found. In the supercritical case, the mass of black holes is finite and has the form M(pp)γM \propto (p - p^{*})^{\gamma}, with γ=1/2\gamma = 1/2.Comment: Latex file, including 2 figures, avalaible upon reques

    Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point

    Full text link
    Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.Comment: 4 pages, 2 figure
    corecore