1,983 research outputs found

    Print-Scan Resilient Text Image Watermarking Based on Stroke Direction Modulation for Chinese Document Authentication

    Get PDF
    Print-scan resilient watermarking has emerged as an attractive way for document security. This paper proposes an stroke direction modulation technique for watermarking in Chinese text images. The watermark produced by the idea offers robustness to print-photocopy-scan, yet provides relatively high embedding capacity without losing the transparency. During the embedding phase, the angle of rotatable strokes are quantized to embed the bits. This requires several stages of preprocessing, including stroke generation, junction searching, rotatable stroke decision and character partition. Moreover, shuffling is applied to equalize the uneven embedding capacity. For the data detection, denoising and deskewing mechanisms are used to compensate for the distortions induced by hardcopy. Experimental results show that our technique attains high detection accuracy against distortions resulting from print-scan operations, good quality photocopies and benign attacks in accord with the future goal of soft authentication

    Lime: Data Lineage in the Malicious Environment

    Full text link
    Intentional or unintentional leakage of confidential data is undoubtedly one of the most severe security threats that organizations face in the digital era. The threat now extends to our personal lives: a plethora of personal information is available to social networks and smartphone providers and is indirectly transferred to untrustworthy third party and fourth party applications. In this work, we present a generic data lineage framework LIME for data flow across multiple entities that take two characteristic, principal roles (i.e., owner and consumer). We define the exact security guarantees required by such a data lineage mechanism toward identification of a guilty entity, and identify the simplifying non repudiation and honesty assumptions. We then develop and analyze a novel accountable data transfer protocol between two entities within a malicious environment by building upon oblivious transfer, robust watermarking, and signature primitives. Finally, we perform an experimental evaluation to demonstrate the practicality of our protocol

    Copyright protection for the electronic distribution of text documents

    Get PDF
    Each copy of a text document can be made different in a nearly invisible way by repositioning or modifying the appearance of different elements of text, i.e., lines, words, or characters. A unique copy can be registered with its recipient, so that subsequent unauthorized copies that are retrieved can be traced back to the original owner. In this paper we describe and compare several mechanisms for marking documents and several other mechanisms for decoding the marks after documents have been subjected to common types of distortion. The marks are intended to protect documents of limited value that are owned by individuals who would rather possess a legal than an illegal copy if they can be distinguished. We will describe attacks that remove the marks and countermeasures to those attacks. An architecture is described for distributing a large number of copies without burdening the publisher with creating and transmitting the unique documents. The architecture also allows the publisher to determine the identity of a recipient who has illegally redistributed the document, without compromising the privacy of individuals who are not operating illegally. Two experimental systems are described. One was used to distribute an issue of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, and the second was used to mark copies of company private memoranda
    corecore