3 research outputs found

    Chaos Firefly Algorithm With Self-Adaptation Mutation Mechanism for Solving Large-Scale Economic Dispatch With Valve-Point Effects and Multiple Fuel Options

    Get PDF
    This paper presents a new metaheuristic optimization algorithm, the firefly algorithm (FA), and an enhanced version of it, called chaos mutation FA (CMFA), for solving power economic dispatch problems while considering various power constraints, such as valve-point effects, ramp rate limits, prohibited operating zones, and multiple generator fuel options. The algorithm is enhanced by adding a new mutation strategy using self-adaptation parameter selection while replacing the parameters with fixed values. The proposed algorithm is also enhanced by a self-adaptation mechanism that avoids challenges associated with tuning the algorithm parameters directed against characteristics of the optimization problem to be solved. The effectiveness of the CMFA method to solve economic dispatch problems with high nonlinearities is demonstrated using five classic test power systems. The solutions obtained are compared with the results of the original algorithm and several methods of optimization proposed in the previous literature. The high performance of the CMFA algorithm is demonstrated by its ability to achieve search solution quality and reliability, which reflected in minimum total cost, convergence speed, and consistency

    Optimal scheduling of microgrid with distributed power based on water cycle algorithm

    Get PDF
    Microgrid, taking advantage of distributed power generation technology, plays an important role in maximizing the utilization of renewable energy. Based on the problems of the energy crisis, environmental contamination and the high operating cost of the microgrid, the microgrid model can effectively ease energy pressure.We can dispatch the output of each part in the microgrid to obtain the optimal economy. Since many traditional optimization algorithms have limitations of local optimization, multiple iterations, and slow convergence speed, this paper proposes a method that applies the Water Cycle Algorithm (WCA) to optimize the dispatch of the microgrid to minimize the operating cost. The mathematical model of each distributed power is established. The interactive power between the microgrid and large grid is also considered. The lowest generation cost considering environmental benefits is taken as the objective function. Water cycle algorithm is implemented to obtain the optimal solution under various constraints. Some optimization algorithms such as Genetic Algorithm (GA), Interior Search Algorithm (ISA), and Differential Search Algorithm (DSA) were used for results evaluation. By comparing the results obtained from four different algorithms, a case study shows the WCA possesses the advancements of better convergence performance, faster calculation and higher precision compared to the other algorithms. The results demonstrate that the WCA applied to determine the optimal scheduling of the microgrid can achieve a better result than some other algorithms with an acceptable accuracy and efficiency

    Economic Lot Sizing and Scheduling in Distributed Permutation Flow Shops

    Get PDF
    This paper addresses a new mixed integer nonlinear and linear mathematical programming economic lot sizing and scheduling problem in distributed permutation flow shop problem with number of identical factories and machines. Different products must be distributed between the factories and then assignment of products to factories and sequencing of the products assigned to each factory has to be derived. The objective is to minimize the sum of setup costs, work-in-process inventory costs and finished products inventory costs per unit of time. Since the proposed model is NP-hard, an efficient Water Cycle Algorithm is proposed to solve the model. To justify proposed WCA, Monarch Butterfly Optimization (MBO), Genetic Algorithm (GA) and combination of GA and simplex are utilized. In order to determine the best value of algorithms parameters that result in a better solution, a fine-tuning procedure according to Response Surface Methodology is executed
    corecore