4,131 research outputs found

    Wasserstein Variational Inference

    Get PDF
    This paper introduces Wasserstein variational inference, a new form of approximate Bayesian inference based on optimal transport theory. Wasserstein variational inference uses a new family of divergences that includes both f-divergences and the Wasserstein distance as special cases. The gradients of the Wasserstein variational loss are obtained by backpropagating through the Sinkhorn iterations. This technique results in a very stable likelihood-free training method that can be used with implicit distributions and probabilistic programs. Using the Wasserstein variational inference framework, we introduce several new forms of autoencoders and test their robustness and performance against existing variational autoencoding techniques.Comment: 8 pages, 1 figur

    Practical bounds on the error of Bayesian posterior approximations: A nonasymptotic approach

    Full text link
    Bayesian inference typically requires the computation of an approximation to the posterior distribution. An important requirement for an approximate Bayesian inference algorithm is to output high-accuracy posterior mean and uncertainty estimates. Classical Monte Carlo methods, particularly Markov Chain Monte Carlo, remain the gold standard for approximate Bayesian inference because they have a robust finite-sample theory and reliable convergence diagnostics. However, alternative methods, which are more scalable or apply to problems where Markov Chain Monte Carlo cannot be used, lack the same finite-data approximation theory and tools for evaluating their accuracy. In this work, we develop a flexible new approach to bounding the error of mean and uncertainty estimates of scalable inference algorithms. Our strategy is to control the estimation errors in terms of Wasserstein distance, then bound the Wasserstein distance via a generalized notion of Fisher distance. Unlike computing the Wasserstein distance, which requires access to the normalized posterior distribution, the Fisher distance is tractable to compute because it requires access only to the gradient of the log posterior density. We demonstrate the usefulness of our Fisher distance approach by deriving bounds on the Wasserstein error of the Laplace approximation and Hilbert coresets. We anticipate that our approach will be applicable to many other approximate inference methods such as the integrated Laplace approximation, variational inference, and approximate Bayesian computationComment: 22 pages, 2 figure

    Bridging the Gap Between Variational Inference and Wasserstein Gradient Flows

    Full text link
    Variational inference is a technique that approximates a target distribution by optimizing within the parameter space of variational families. On the other hand, Wasserstein gradient flows describe optimization within the space of probability measures where they do not necessarily admit a parametric density function. In this paper, we bridge the gap between these two methods. We demonstrate that, under certain conditions, the Bures-Wasserstein gradient flow can be recast as the Euclidean gradient flow where its forward Euler scheme is the standard black-box variational inference algorithm. Specifically, the vector field of the gradient flow is generated via the path-derivative gradient estimator. We also offer an alternative perspective on the path-derivative gradient, framing it as a distillation procedure to the Wasserstein gradient flow. Distillations can be extended to encompass ff-divergences and non-Gaussian variational families. This extension yields a new gradient estimator for ff-divergences, readily implementable using contemporary machine learning libraries like PyTorch or TensorFlow
    • …
    corecore