1,387 research outputs found

    Conditional Wasserstein generative adversarial networks applied to acoustic metamaterial design

    Get PDF
    This work presents a method for the reduction of the total scattering cross section (TSCS) for a planar configuration of cylinders by means of generative modeling and deep learning. Currently, the minimization of TSCS requires repeated forward modelling at considerable computer resources, whereas deep learning can do this more efficiently. The conditional Wasserstein generative adversarial networks (cWGANs) model is proposed for minimization of TSCS in two dimensions by combining Wasserstein generative adversarial networks with convolutional neural networks to simulate TSCS of configuration of rigid scatterers. The proposed cWGAN model is enhanced by adding to it a coordinate convolution (CoordConv) layer. For a given number of cylinders, the cWGAN model generates images of 2D configurations of cylinders that minimize the TSCS. The proposed generative model is illustrated with examples for planar uniform configurations of rigid cylinders

    Improving EEG Signal Classification Accuracy Using Wasserstein Generative Adversarial Networks

    Full text link
    Electroencephalography (EEG) plays a vital role in recording brain activities and is integral to the development of brain-computer interface (BCI) technologies. However, the limited availability and high variability of EEG signals present substantial challenges in creating reliable BCIs. To address this issue, we propose a practical solution drawing on the latest developments in deep learning and Wasserstein Generative Adversarial Network (WGAN). The WGAN was trained on the BCI2000 dataset, consisting of around 1500 EEG recordings and 64 channels from 45 individuals. The generated EEG signals were evaluated via three classifiers yielding improved average accuracies. The quality of generated signals measured using Frechet Inception Distance (FID) yielded scores of 1.345 and 11.565 for eyes-open and closed respectively. Even without a spectral or spatial loss term, our WGAN model was able to emulate the spectral and spatial properties of the EEG training data. The WGAN-generated data mirrored the dominant alpha activity during closed-eye resting and high delta waves in the training data in its topographic map and power spectral density (PSD) plot. Our research testifies to the potential of WGANs in addressing the limited EEG data issue for BCI development by enhancing a small dataset to improve classifier generalizability.Comment: 11 pages, 2 tables, 3 figure
    • …
    corecore