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Conditional Wasserstein generative adversarial networks
applied to acoustic metamaterial design

Peter Lai,1 Feruza Amirkulova,1,a) and Peter Gerstoft2,b)

1Mechanical Engineering Department, San Jose State University, San Jose, California 95192, USA
2Marine Physical Laboratory, Scripps Institution of Oceanography, UCSD, San Diego, California 92037, USA

ABSTRACT:
This work presents a method for the reduction of the total scattering cross section (TSCS) for a planar configuration

of cylinders by means of generative modeling and deep learning. Currently, the minimization of TSCS requires

repeated forward modelling at considerable computer resources, whereas deep learning can do this more efficiently.

The conditional Wasserstein generative adversarial networks (cWGANs) model is proposed for minimization of

TSCS in two dimensions by combining Wasserstein generative adversarial networks with convolutional neural

networks to simulate TSCS of configuration of rigid scatterers. The proposed cWGAN model is enhanced by adding

to it a coordinate convolution (CoordConv) layer. For a given number of cylinders, the cWGAN model generates

images of 2D configurations of cylinders that minimize the TSCS. The proposed generative model is illustrated with

examples for planar uniform configurations of rigid cylinders. VC 2021 Acoustical Society of America.

https://doi.org/10.1121/10.0008929

(Received 20 May 2021; revised 11 October 2021; accepted 11 November 2021; published online 16 December 2021)

[Editor: Michael R Haberman] Pages: 4362–4374

I. INTRODUCTION

Acoustic metamaterials, unlike conventional materials,

can be specifically structured to achieve unnatural values of

mechanical properties, such as (negative) effective mass

density, bulk modulus, and refractive index.1–4 This unique

property enables more complex acoustic engineering

applications, such as wave steering,5 cloaking,6,7 and

focusing.3,8,9 Although optimization and computational

methods in direct metamaterial design have shown great

performance, these methods are not capable of inverse

design of complex structure. An emerging category of

inverse design is based on data-driven approaches. With an

increased interest of the research community in machine

learning (ML), design of metamaterials and physical devices

has been no exception.

Due to broader access to computational power, we are

now able to design deep neural networks (NN) and train

them with massive amounts of data. While the most mature

works are related to computer vision,10–12 including areas

such as object detection, segmentation, motion estimation,

object tracking, image classification, and captioning, we

now observe the application of innovative data-driven mod-

els in various domains to solve complex problems.

ML and artificial intelligence (AI) are driving innova-

tions in genomics,13 natural language processing,14 quantum

mechanics, material design, marketing personalization, rec-

ommendation engines, smart cities, biometric monitoring,

augmented reality, manufacturing, and self-driving cars, to

name a few. Deep learning (DL) has been used in the

inverse design of photonic devices,15,16 waveguides17 and

metastructures,18–23 and in shape reconstructions,24 mass

transport cloaking,25 multiscale analysis of composite mate-

rials,26 source localization,27,28 and molecular simulations31

with superior performance.

Bianco et al.41 provided a review of a recent application

of ML in acoustics, including the applications of support

vector machine, K-means techniques, dictionary learning,

autoencoders, and DL in acoustics. The review papers29,41

show that ML was recently employed in solving problems

of bioacoustics, speech modeling, and signal processing29

including the automatic speech recognition, source localiza-

tion in ocean acoustics,27,28 speaker localization and track-

ing, and source separation and sound/audio enhancement.30

Recent review papers32–36 suggest that DL, reinforce-

ment leaning, and generative modeling assisted inverse

design models can by far exceed human capability. Fan

et al.39 explored acoustic scattering by a single scatterer as a

2D image-to-image regression problem using CNN where

the inputs were the images of convex prism objects and the

outputs were the loudness fields. Gao and Zhu22 proposed

an inverse design method for acoustic metamaterials. Meng

et al.24 explored the inverse acoustic scattering problem that

reconstructs the obstacle shape with far-field information

using NN. Fan et al.40 studied an inverse scattering problem

using CNN which predicts the object given the total acoustic

field. Kumar et al.38 proposed a data-driven inverse design

of spinodoid metamaterials. DL models for both forward

and inverse designs work well on simple geometries

described with a smaller number of parameters but they

a)Electronic mail: feruza.amirkulova@sjsu.edu, ORCID: 0000-0002-6348-

4941.
b)ORCID: 0000-0002-0471-062X.

4362 J. Acoust. Soc. Am. 150 (6), December 2021 VC 2021 Acoustical Society of America0001-4966/2021/150(6)/4362/13/$30.00

ARTICLE...................................

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/6/4362/13014924/4362_1_online.pdf

https://doi.org/10.1121/10.0008929
mailto:feruza.amirkulova@sjsu.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0008929&domain=pdf&date_stamp=2021-12-16


perform poorer as degree of freedom of parameters in design

space increase, making the scaling such complex models

impractical. An alternative method is to use generative

modeling which will be discussed in the remaining part of

this section.

Butler et al.32 reviewed recent progress in ML for the

chemical sciences. Sanchez-Lengeling and Aspuru-Guzik42

discussed recent advances in inverse molecular design

reviewed methods for achieving inverse design, which aims

to discover tailored materials from the starting point of a

particular desired functionality. Among these methods, deep

generative models have been applied to numerous classes of

materials, such as rational design of prospective drugs, syn-

thetic routes to organic compounds, and optimization of

photovoltaics and redox flow batteries, as well as a variety

of other solid-state materials. A literature review shows the

potential of ML and specifically generative modeling to

learn features in high performance devices.36,43 A properly

trained network can produce high performance beyond the

parameter given in the training dataset.

Generative adversarial networks (GANs)44–49 and varia-

tional autoencoders (VAE)50 have had a huge success since

they were introduced in 2014. GANs were described by

Yann LeCun, Director of AI Research at Facebook, as “the

most interesting idea in the last 10 years in ML.”89 The con-

ditional GAN46 was introduced which can learn single-

modal and multi-modal models. The Wasserstein GAN

(WGAN)47,51 was presented to improve the stability of

learning and to avoid mode collapse. Mode collapse occurs

when the generative model fixates on a single solution and

continues to reproduce that solution, regardless of the initial

noise presented to it.

Boget49 studied a variety of adversarial regression mod-

els and made their comparison. Gretton et al.52 proposed a

kernel method to determine if two samples are from differ-

ent distributions. Lee et al.53 created the Collaborative GAN

(CollaGAN) framework for missing image data imputation.

Liu et al.54 introduced the CoordConv model and showed

that using the coordinate convolution layer, CoordConv, in a

GAN produced less mode collapse. Gerstoft et al.55 used a

WGAN model in which the trained generator implements a

parametric bootstrap.

Deep generative models have been applied in inverse

design of molecular components,32,42,56,57 metasurfa-

ces,18,58–61 acoustic metamaterials,23 optical cloak62 and fil-

ters,63 power splitters,64 material microstructure,65 protein

solubility,66 rational design of prospective drugs, solid-state

materials, and of photonic devices.67–69 Liu et al.67 used

GAN in the network model for the inverse design of meta-

surfaces using electromagnetic scatterers. Jiang et al.60

showed that conditional GAN46 can learn from a small set

of optimized metasurfaces to produce a large number of

devices. Ma et al.68 proposed and developed a deep genera-

tive model for inverse design of metamaterials using GAN.

An inverse design scheme based on the Global

Optimization Network (GLOnet) was proposed18,58,59 that

reframes the optimization as the iterative training of

generative NN. Wen et al.61 showed that by coupling pro-

gressive growth of the network and training set with the

GAN framework, generative model can output robust free-

form metasurface devices. Tan et al.65 developed a deep

convolutional generative adversarial network (DCGAN)70

based inverse design of microstructural materials. The opti-

mization of an optical cloak was presented in Ref. 62 by

using DCGAN70 architecture. An et al.71 designed metasur-

faces for electromagnetic wave manipulation using condi-

tional WGAN. More recently, Gurbuz et al.23 proposed the

design of broadband acoustic metamaterials using condi-

tional GAN for sound insulation tasks combining GAN with

finite element simulations.

Liu et al.72 developed a variational autoencoder (VAE)

model and modified evolution strategy (ES) to design nano-

photonic metasurfaces with subwavelength features without

prior knowledge of the geometry of the candidate patterns;

they included the NN simulator in their scheme to expedite

the searching speed. Tang et al.64 proposed a conditional

VAE enhanced with adversarial sensoring for the generation

of power splitters. Han et al.63 proposed an inverse design

of metasurface optical filters using deep NN and generative

modeling. More recently Ahmed et al.37 and Tran et al.73

proposed the inverse design models of broadband acoustic

cloak using VAE and “autoencoder–like” networks.

Hybrid models were introduced combining VAE and

GAN for different applications in molecular design and drug

discoveries.73,75,76 Larsen et al.73 combined VAE and GAN

into an unsupervised hybrid generative model that simulta-

neously learns to encode, generate, and compare dataset

samples at the same time; they showed that the hybrid gen-

erative models, VAE/GAN, trained with learned similarity

measures, produce better image samples than models trained

with element-wise error measures. Brock et al.77 introduced

the introspective adversarial network, a hybridization of the

VAE and GAN, to tackle the challenge of achieving accu-

rate reconstructions without loss of feature quality. Kadurin

et al.76 developed an advanced adversarial autoencoder

(AAE) model for molecular feature extraction problems,

and demonstrated its advantages compared to the VAE.

Blaschke et al.75 studied the potential use of generative

autoencoders for de novo molecular design considering vari-

ous generative autoencoders including VAE and AAE.

Zhang et al.78 proposed a conditional AAE to learn the face

manifold to achieve age progression and regression simulta-

neously by controlling the age attribute. Other hybrid mod-

els, such as VQ-VAE,79 VEEGAN,80 CVAE-GAN,81 and

VAE-WGAN,82 were introduced to reduce mode collapse

and lack of diversity.

In this paper, we solve the inverse design problem by

means of the multiple scattering theory, DL, and generative

modeling. Specifically, we attempt to inverse design an

acoustic cloak,6,7 leveraging GAN to minimize the scatter-

ing by uniform configurations of cylindrical scatterers. The

generative networks23,32–36 have a potential to produce bet-

ter optimized metacluster configurations. We will demon-

strate the performance of generative models for 2- and

J. Acoust. Soc. Am. 150 (6), December 2021 Lai et al. 4363

https://doi.org/10.1121/10.0008929

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/150/6/4362/13014924/4362_1_online.pdf

https://doi.org/10.1121/10.0008929


4-scatterer configurations. Therefore, the purpose of this study

is to provide a framework for incorporating DL and generative

modeling techniques in inverse acoustic metacluster design. To

achieve this, we develop and train a conditional Wasserstein

generative adversarial network (cWGAN) to propose images

of metaclusters given an expected TSCS.

The paper is organized as follows. Section II starts with

a formulation of the multiple scattering problem and data

generation procedure. The composition of regressor CNN

model is outlined. The development of the cWGAN model

and its training procedure are further described. Numerical

results are presented in Sec. III considering the operating

normalized wavenumber range kia 2 ½0:35; 0:45� where

i ¼ 1;…; 11 for 2-scatterer and 4-scatterer configurations.

Section IV gives conclusions of this study and discusses

related future work directions.

II. METHODS

A. Problem formulation and multiple scattering
solution

We consider acoustic multiple scattering by an arbitrary

planar configuration of M cylindrical scatterer in the context

of the acoustic time harmonic wave equation.7,83–85 The

total pressure field pðxÞ; x 2 R2 is defined as the sum of

incident pinc and scattered psc pressure fields, and satisfies

the Helmholtz equation

r2pþ k2p ¼ q; (1)

where k ¼ x=c is the wavenumber, c is the acoustic speed,

x is the frequency, and q represents sources. The incident

field, pinc, is a plane wave propagating in the positive x
direction which interacts with a given configuration of scat-

terers. We consider these scatterers to be rigid cylinders of

constant radii a¼ 1 m situated within the circular region of

radius Rout ¼15 m as shown in Fig. 1.

As a measure of scattering, more specifically, as a mea-

sure of how much energy is scattered by a configuration of

scatterers, we use the total scattering cross section

(TSCS).86 We use the optical theorem87 to formulate the

TSCS in terms of the forward scattering amplitude:

r ¼ �2Ref ð0Þ; (2)

where f ð0Þ ¼ f ðh ¼ 0Þ is the forward scattering amplitude,

and the far-field amplitude form function, f ¼ f ðh; r1; …;
rMÞ; h ¼ argðxÞ, is defined by the scattered pressure psc in

the far-field:7

f ðhÞ ¼ 2

k

XM

m¼1

e�ikjrmj cos ðh�argðrmÞÞ
X1

n¼�1
ð�iÞnBðmÞn einh: (3)

Here, r1; …; rM are the position vectors, M is the total number

of cylinders, and BðmÞn are the scattered pressure psc field coeffi-

cients.7,84 For more details, see the Appendix of Ref. 83.

B. Data generation

To train both the CNN and cWGAN model, we gener-

ate datasets by means of the multiple scattering theory

(MST)7,85 and optical theorem Eq. (2). Specifically, we gen-

erate two datasets, one for 2-scatterer configurations and

one for 4-scatterer configurations. The scatterer positions

are selected randomly for each configuration and we evalu-

ate the TSCS, r, in MATLAB (MathWorks, Natick, MA) at

discrete values of normalized wavenumber kia 2
½0:35; 0:45�; i ¼ 1;…; 11 with an interval of 0.01 as shown

in Figs. 2 and 3. We generate 60 000 samples for M¼ 2 and

4 configurations and reserve the evaluated TSCS as labels

for training. This wavenumber range ka 2 ½0:35; 0:45� was

chosen for a technical convenience that takes lesser time to

generate a dataset for training. At the same time, it has a

physical reason: it is hard to optimize TSCS at low frequen-

cies at which the state-of-the-art optimization algorithms

struggle to find values close to the global minimum of TSCS

which is zero.

Additionally, we generate a small dataset of optimal

configurations with minimal TSCS. We use MATLAB’s non-

linear programming solver, fmincon, with MuliStart

(MathWorks, Natick, MA) to search for configurations with

minimized TSCS while constrained to real physical proper-

ties. Several configurations of randomly placed scatterers,

via MultiStart, are initialized. The MS solver evaluates the

TSCS as well as the gradients for each configuration, and

fmincon continues to perturb the scatterer positions toward

minimized gradients until the optimal configurations are

found. For 2-scatterer configurations and 105 data points,

five unique optimal TSCS solutions are observed. However,

given the larger variety of 4-scatterer configurations, the

optimal dataset in not limited to only a few unique

solutions.

FIG. 1. (Color online) Physical scatterer configuration (left) and the corre-

sponding scaled pixel images (right). The incident plane wave is propagat-

ing in the positive x direction indicated by blue arrows in the physical

configuration image. The image is scaled to 64� 64 pixel resolution size

with scattering elements (yellow) and exterior fluid medium (dark

magenta). Each scatterer in the physical space is altered from its cylindrical

shape to fit within the discrete pixel space.
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In our initial deep learning model for acoustic cloaking,

we started with fully connected neural networks (FCNN)

architecture where the inputs to FCNN were the positions

of each scatterer in a given planar configuration as a column

vector 2M by 1 where M is the total number of scatterers.

Although the dataset was large (60 000 samples), we noticed

that FCNN were not able to learn and produce the average

value of the TSCS in the dataset. The error during training

was low but the FCNN model was performing poorly on

unseen data. When we switched to binary images, both

FCNN and CNN were able to approximate the TSCS.

However, with an increase in the number of scatterers, the

accuracy of FCNN predictions was lower in comparison to

CNN results. The CNN architectures are better at generali-

zation on unseen data as they can leverage spatial correla-

tions in an image that would or else be lost in the flattening

step for FCNN.74

C. Generative modeling

To solve the inverse design problem, a few components

are necessary: a generative model capable of producing real-

istic designs, a method to enable the model to generate

images with specified responses, and an evaluator that can

confirm the validity of generated images. A popular genera-

tive model is the GAN.44,45 The GAN use an adversarial

process, in which two models, a generator G and critic C are

trained simultaneously. GANs, however, are difficult to

train; mode collapse and convergence failure are typical to

the training process. As a foundation to our generative

model, we chose the Wasserstein GAN47,51 (WGAN) with

penalized norm of gradient of C with respect to its input.

In the WGAN, generator G learns to generate new data

with the same statistics while critic C scores the realness of

an image based on the Wasserstein distance between the

dataset distribution and the generated image distribution.

The Wasserstein distance measures the distance between

two probability densities and is informally called earth mov-

er’s distance. When the two probability distributions are

described as piles of earth, or dirt, the earth mover’s dis-

tance represents the minimum cost in turning one pile to the

other, providing a quantifiable metric for describing two dif-

ferent probability densities. This Wasserstein distance is a

continuous function, which provides a linear gradient at

every step of the training process. The standard GAN relies

on the zero sum-game between the discriminator and gener-

ator. However, once the discriminator is trained, it may fail

to provide useful information in updating the generator.

This results in a network that requires close attention to the

model architecture and parameters to maintain a stable train-

ing process. The Wasserstein distance, however, provides

smooth, linear gradients throughout the training process

resulting in a more stable and robust model.

1. cWGAN model architecture

A method to enable image generation with specified

inputs is seen in a WGAN variant: the conditional GAN,46

here cWGAN. This model injects the condition, or expected

response, early into the training process to allow the GAN to

learn the correlation between designs and responses. We

provide the TSCS as labels for each real scatterer configura-

tion to the WGAN, and allow the WGAN to further generate

configurations targeting the specified TSCS.

Our generative model, see Fig. 4, consists of the stan-

dard WGAN architecture with the aforementioned modifica-

tions to improve the capability of the standard model. By

introducing both the conditional functionality46,66 and the

CoordConv54 layer to the standard WGAN,51 we enable the

model to generate design images targeting specified TSCS

FIG. 2. (Color online) Samples of 2-

scatterer configuration images selected

from the M¼ 2 random configuration

dataset and the corresponding TSCS.

FIG. 3. (Color online) Four-scatterer

configuration image samples selected

from the M¼ 4 random configuration

dataset and the corresponding TSCS.
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responses while improving the metacluster accuracy and

image quality. Liu et al.54 introduced the coordinate convo-

lution layer (CoordConv) that performs a coordinate trans-

formation between coordinates in Cartesian space and pixel

space much faster with fewer parameters than convolution

and improves CNN performance. The CoordConv layer is an

extension of the standard convolution layer; additional hard-

coded channels, with constant values for coordinate information,

is concatenated to the standard convolution layer which allows

it to better recognize positions of objects in images. They

showed that using CoordConv in a GAN reduced mode collapse

as the transform between high-level spatial latent variables and

pixels was easier learned. We adapted the CoordConv54 layer

and included it in both G and C of cWGAN.

The generator G consists of an input layer, a

CoordConv layer,54 and multiple convolution layers. In the

input layer, the generator G receives the latent noise vector

of size 256, which is selected arbitrarily and taken as a mul-

tiple of 64. The latent vector, a realization of a (pseudo-)ran-

dom vector g 2 R1, and the target TSCS is concatenated

and passed to the generative model. The model generates an

approximated realization of binary images of scatterer con-

figurations where g � Nð0; 1Þ which is chosen for conve-

nience. The input layer, of 1� 1 size, is tiled to a 64� 64

size by replicating the input multiple times to match the tar-

get image resolution, and the channel is expanded by a size

of 2 when processed by the CoordConv layer; this introdu-

ces Cartesian coordinate information to the model. The out-

put is processed through a series of convolutions with

decreasing channel size, resulting in an unchanged final

image resolution size, but a condensed channel size. We use

the rectified linear unit (ReLU) activation for all convolution

layers.

The critic C model follows closely with the standard

WGAN critic architecture. The input layer, which accepts

64� 64 images proposed by the generator, is passed to the

CoordConv layer to expand the channel size. This output is

processed through five convolution layers with a Leaky

ReLU activation of a ¼ 0:2 and a dropout of 0.25 after each

convolution. As suggested,47 we omit batch normalization

in the critic C. The resulting output is flattened and passed

into a single unit dense layer. Table I details the WGAN

generator G architecture whereas Table II describes the

WGAN critic C architecture. The cWGAN model is devel-

oped using Tensorflow (Mountain View, CA) and Keras

(Mountain View, CA).

D. TSCS CNN regressor R model

In order to influence the generative model to produce

designs with TSCS corresponding to the dataset distribution,

we use a CNN model, the regressor R, to predict the TSCS

from images of 2- or 4-scatterer configurations, see Table III.

Including the regressor R provides an additional avenue to

improve the model’s selective design generation capability.

While the critic determine the realness or fakeness of the

images, the regressor R validates the incoming image’s

TSCS. When the generator G proposes a design to the critic

C for evaluation, the same design is processed through the R
regressor for TSCS prediction. The mean absolute error

(MAE) between the predicted and expected TSCS is incorpo-

rated in the cWGAN loss function. The CNN model is devel-

oped using Tensorflow and Keras.

FIG. 4. (Color online) Schematic of cWGAN model. The cWGAN model comprises a CoordConv implemented generator and critic, as well as the pre-

trained regressor. The regressor is trained on the same random configuration dataset as the cWGAN. A Gaussian distributed noise vector of size 256 is

selected arbitrarily which we take as a multiple of 64, concatenated with the desired TSCS label, and is fed into the generator. The generator produces an

image and passes it to both the critic and the regressor. The critic determines the Wasserstein distance between the real image and the generated image. The

regressor predicts the TSCS value from the generated image and the MAE between predicted and desired TSCS is evaluated. Both the Wasserstein loss and

the MAE loss are then used to update the generator’s weights through backpropagation of the total loss function’s derivatives with respect to the weights.

TABLE I. WGAN Generator G architecture. The input layer consists of the

noise (1� 256) and TSCS input (1� 11), is tiled into a 64� 64 output size

where two additional channels are added through the CoordConv54 proce-

dure. The generator has 4 50 433 trainable parameters. Each convolution

layer uses the ReLU activation function.

Layer Size Kernel Padding Output

Input 256 — — 1 � 1 � 267

CoordConv — — — 64 � 64 � 269

Conv2D 512 1 � 1 Valid 64 � 64 � 512

Conv2D 256 1 � 1 Valid 64 � 64 � 256

Conv2D 256 1 � 1 Valid 64 � 64 � 256

Conv2D 128 1 � 1 Same 64 � 64 � 128

Conv2D 64 1 � 1 Same 64 � 64 � 64

Conv2D 64 3 � 3 Same 64 � 64 � 64

Conv2D 64 3 � 3 Same 64 � 64 � 64

Conv2D 1 1 � 1 Same 64 � 64 � 1
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We train the regressor R with the random configuration

dataset, for either 2-scatterer or 4-scatterer configurations,

for 100 epochs using a batch size of 50. We use the

RMSprop88 optimizer with a small learning rate of 0.0001

and a mean absolute error (MAE) loss. To validate the train-

ing we use a tenfold cross-validation method. The dataset is

first separated into 50 000 training samples and 10 000 test

samples. Of the 50 000 training samples, we use a tenfold

cross-validation method where the training set is further

split into 10 different combinations of 45 000 train and 5000

validation samples. The regressor model is trained on each

combination and the average mean absolute error is evalu-

ated. The average MAE across the tenfold cross-validation

training for 2-scatterer configurations is 0.0352 and the average

standard deviation is 0.0280. For 4-scatterer configurations, the

average MAE is 0.0861 and the average standard deviation is

0.0581. The average mean absolute percentage error (MAPE)

is 5.56% for the 2-scatterer model and 7.28% for the

4-scatterer model; both models make r predictions with >90%

accuracy. Figure 5 shows a sample loss plot of onefold in the

cross-validation training. The converging training and valida-

tion loss indicates that the model is not overfitting to the data.

After training the regressor R, the remaining 10 000 test

samples are used to further confirm its performance on unseen

data. Resulting MAE evaluated is shown in Fig. 6. The aver-

age MAE across the entire test set is 0.044 for 2-scatterer

images and 0.107 for 4-scatterer images. Figure 7 illustrates

the CNN TSCS prediction compared to the analytically evalu-

ated TSCS by MST for randomly selected 2-scatterer and

4-scatterer test samples. The performance of R regressor

model on the test set reflects the training performance,

highlighting the model’s ability to predict TSCS from unseen

data. Additionally, we test the regressor on the optimal config-

uration dataset. We present images of r minimized scatterer

configurations to the regressor and allow the regressor to pre-

dict the r. The 2-scatterer trained regressor predicted the r
with an average MAE of 0.0352 with standard deviation of

0.0179 while the 4-scatterer regressor resulted in an average

MAE of 0.0897 with an average standard deviation of 0.0472.

These results confirm that the 2-scatterer and 4-scatterer

regressor trained on random configurations are robust and can

predict r from unseen configurations.

III. NUMERICAL RESULTS

A. cWGAN training procedure

To train the cWGAN, we use the dataset described in

Sec. II B, consisting of 64� 64 pixel images of random 2-

scatterer and 4-scatterer configurations with corresponding

TSCS r evaluated at 11 discrete values of wavenumber

ka 2 ½0:35; 0:45�. In the cWGAN model, a batch of random

TABLE III. The CNN regressor R architecture for TSCS prediction. The

input layer consists of the 64� 64 pixel image of 2-scatterer or 4-scatterer

configurations. The output dense layer contains 11 units for TSCS evaluated

at normalized wavenumber kia 2 ½0:35; 0:45� with an interval of 0.01. Each

convolution layer uses the ReLU activation function.

Layer Units Kernel Stride Padding

Conv2D 32 3 � 3 1 � 1 Same

Batch Norm — — — —

MaxPool2D — 2 � 2 — —

Conv2D 8 3 � 3 1 � 1 Same

Batch Norm — — — —

MaxPool2D — 2 � 2 — —

Dense 256 — — —

Dense 11 — — —

TABLE II. WGAN Critic C model architecture. CoordConv54 is applied to

the input layer to expand the channel size to include Cartesian coordinate

information when examining the generated image. Subsequent convolution

layers, a flattening layer, and a dense layer reduce the output size to 1 while

incorporating dropouts prevent overfitting. All convolutional 2D (Conv2D)

layers used a 3� 3 kernel with stride of 2 and Leaky ReLU.

Layer Size Output

Input (64 � 64) 64 � 64 � 1

CoordConv — 64 � 64 � 3

Conv2D 64 32 � 32 � 64

ZeroPadding — 33 � 33 � 64

Conv2D 128 17 � 17 � 127

Dropout 0.25 —

Conv2D 256 9 � 9 � 256

Dropout 0.25 —

Conv2D 512 5 � 5 � 512

Conv2D 1024 3 � 3 � 1024

Dropout 0.25 —

Flattening layer — 9216

Dense 1 —

FIG. 5. (Color online) TSCS CNN regressor R training and validation loss

for (a) 2-scatterer, and (b) 4-scatterer metacluster designs after 100 epochs.

Both training and validation losses follow the same trend and converge to a

similar value. Two-scatterer images converge to 0.045, and 4-scatterer

images to 0.106.

FIG. 6. (Color online) MAE for all test dataset samples for (a) 2-scatterer.

and (b) 4-scatterer configurations. Average MAE across all 10 000 test

points is 0.044 for 2-scatterer and 0.107 for 4-scatterer configurations.
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Gaussian distributed noise vectors of length 256 is first gen-

erated. To apply a condition to the training, a randomly

selected r response from the batch is appended to each noise

vector. The generator produces an image, from the com-

bined noise and r vector, and proposes the image to the

critic. The critic then calculates the Wasserstein distance

between the generated image and its trained perception of a

real image. Instead of weight clipping, as proposed in the

original WGAN paper,47 we use the gradient-penalty

method,51 to satisfy the Lipschitz constraint.

The loss functions are defined as follows. The generator

loss function LG is generally defined as

LG ¼ LW þ a Lreg; (4)

where LW is the Wasserstein distance between the generated

set and real dataset evaluated by the critic C, Lreg is

the MAE loss supplied by the regressor R, a is the coeffi-

cient that determines the strength of the regressor loss in

comparison to the Wasserstein loss. During our tests, we

determined that a¼ 10 achieved reasonable results. The

critic loss is defined as

LC ¼ LW þ LGP; (5)

where LGP is the loss supplied by the gradient penalty.

The expanded form for LW is51

LW ¼ E~x�Pg
Cð~xÞ½ � �Ex�Pr

CðxÞ½ �; (6)

where E~x�Pg
½Cð~xÞ� is the expected value of critic evaluated

scores of generated image ~x from the generated dataset Pg

and Ex�Pr
½CðxÞ� is the expected score from the real images

x in the dataset Pr.

To implement the gradient penalty to the critic loss LC,

an interpolated image x̂ between the real image x and the

generated image ~x is determined. The difference between

the gradient norm of the critic score for interpolated images,

Cðx̂Þ, and the target norm 1 is used to penalize model. The

gradient penalty loss is defined as

LGP ¼ k Ex̂�Px̂
ðjjr~xCðx̂Þjj2 � 1Þ2; (7)

where the coefficient k is empirically selected as 10.

The regressor loss, Lreg, is the MAE loss between the

evaluated TSCS from generated samples ~x and real samples x:

Lreg ¼ E~x�Pg;~y�Pr
jjRð~xÞ � ~yjj; (8)

where Rð~xÞ is the CNN TSCS prediction of generated sam-

ple ~x and ~y is the expected TSCS from the dataset.

Additionally, the generated images are passed to the aux-

iliary CNN regressor model developed in Sec. II D which

predicts the TSCS r values given the scatterer configuration.

A mean squared error is calculated between the predicted and

actual values of r, defined by Eq. (8), and is combined with

the calculated Wasserstein distance of the critic to form the

full loss function for the generator by Eq. (4).

Following the standard WGAN process, a random batch is

sampled and the critic is trained five times before the generator

is trained once. The cWGAN is trained for 1 50 000 iterations

using a batch size of 60 and a small learning rate of 5e-5.

B. cWGAN generated designs

After training the cWGAN, we check the model’s per-

formance by generating an image and verifying the r
response. We select 8 r samples evaluated at 11 discrete

values of ka from the test set and combine the r vector with

a randomly generated Gaussian distributed noise vector.

This concatenated vector is passed to the generator as a

design condition to generate an image. To reiterate the

improvement by the addition of CoordConv layers in the

cWGAN model, Fig. 8 shows generated images without

CoordConv (a) and with CoordConv (b). The generated

images with CoordConv implemented shows higher consis-

tency than the generated images without CoordConv.

To evaluate the model’s performance in design genera-

tion, we tasked the generator to repeatedly generate designs

for each expected r. Given the variety of configurations pro-

posed, we exclude unfavorable results by limiting the gener-

ator to produce designs with a regressor predicted r within a

MAE of 0.05 for 2-scatterer images and 0.10 for 4-scatterer

FIG. 7. (Color online) CNN TSCS pre-

diction versus the expected r with ran-

domly selected (a) 2-scatterer, and (b)

4-scatterer test samples.
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images from the real r value at ka¼ 0.35, 0.40, and 0.45.

We use a PYTHON-developed function to record pixel coordi-

nates of the scatterers and rescale these values to Cartesian

coordinates. These Cartesian coordinates are passed into our

multiple scattering solver on MATLAB to evaluate the r,

TSCS at different values of normalized wavenumber ka.

Figure 9 displays the generated (grayscale) and real (col-

ored) images of 2-scatterer configurations. Similar spacing

between scatterers is observed for both configurations which

shows that the model was able to learn the dependency of

TSCS on the position vector rjm, i.e., r¼rðrjmkaÞ.7 The posi-

tion vector is defined as: rmj¼rm�rj ð¼�rjmÞ where

m;j¼1;…;M and M is the total number of cylinders. Figure 10

illustrates the dependency of TSCS r on normalized wavenum-

ber ka for the real and generated configurations of M¼2 scatter-

ers from samples of configurations of M¼2 scatterers from

Fig. 9. The red continuous lines correspond to TSCS produced

by generated configurations and blue dashed lines correspond

to TSCS by real configurations. Note that the cWGAN is

trained on images with a wavenumber ka2½0:35;0:45�.
Following our image generation procedure, 100 ran-

domly selected r labels from the 2-scatterer configuration

test set are passed, as the design condition, to the generator.

After generating the images, we retain all generated configu-

rations with a regressor predicted MAE loss less than 0.05.

The r of the generated configurations are evaluated by the

MS solver. The average MAE of all generated configura-

tions for the 100 sample labels is 0.0771 with a standard

deviation of 0.0685. The wide standard deviation indicates

that the generator will still produce configurations with a

larger, or smaller, error than expected. This error range

stems from the regressor’s inaccuracy in predicting r.

The same model architecture and training procedure

was used to train the cWGAN with the random configura-

tion 4-scatterer dataset. We sample 100 r labels from the

FIG. 8. Images generated by cWGAN

models (a) without. and (b) with

CoordConv (Ref. 54) layer. 8 TSCS

samples are selected first within the

test set as the conditions to generate 2-

scatterer. Both models are trained for

1 50 000 iterations with the same

hyperparameters, a low learning rate

5e-5 and batch size 60. The generated

images with CoordConv implemented

shows higher consistency.

FIG. 9. (Color online) Generated (grayscale) and real (colored) images of

2-scatterer configurations. Similar spacing between scatterers is observed

for the generated and real configurations.

FIG. 10. (Color online) The variation of TSCS, r with normalized wave-

number ka for the real and generated configurations from samples given in

Fig. 9. The red continuous and blue dashed lines correspond to TSCS pro-

duced by real and generated configurations, respectively. Although the

cWGAN is trained on images with ka 2 ½0:35; 0:45�, the r evaluated from

generated configurations compares closely to the real configuration.
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test set and provide these labels to the generator to produce

configuration images while retaining the images with a

regressor predicted r less than 0.10, which corresponds to

the loss from the 4-scatterer regressor training. Evaluating

all generated images results in a MAE of 0.1213 with a stan-

dard deviation of 0.0568. Figure 11 presents a comparison

between generated (grayscale) and real (colored) images of

M¼ 4 scatterer configurations. Figure 12 illustrates the vari-

ation of TSCS, r with wavenumber ka for the configurations

shown in Fig. 11, where the red continuous and blue dashed

lines correspond to TSCS produced by generated and real

configurations, respectively. Note that cWGAN is only

trained for wavenumbers kia 2 ½0:35; 0:45� ði ¼ 1; 11Þ.

C. Optimal configuration generation with cWGAN

When a generative network is properly trained, it can

produce optimal performance beyond the parameter given

in the training dataset. Our cWGAN model can generate

optimal configurations that produce near zero TSCS val-

ues. The cWGAN model, previously trained on random

configurations of 2-scatterer or 4-scatterer configurations,

is tested with the optimal configuration dataset. The fmin-

con minimized r labels are concatenated to a noise vector

and passed to the generator. The generator repeatedly gen-

erates scatterer configurations and images with a regressor

predicted r MAE of 0.07 and 0.15, for 2-scatterer and 4-

scatterer configurations respectively, are saved. Six sam-

ples of cWGAN generated images are shown in Fig. 13 and

the resulting TSCS comparison between real and generated

images are shown in Fig. 14.

Out of the seven unique minimized r solutions for 2-

scatterer configurations, the cWGAN was able to produce

designs for six of them. After generating multiple images for

these six solutions, the resulting MAE between the expected

r and the generated images r is 0.1822, 0.0921, 0.1078,

0.0696, 0.0613, and 0.2467. However, further examination of

the error shows a mean error of -0.0401, –0.0386, –0.0276,

0.0279, 0, and -0.0252. The negative error for generated opti-

mal configurations shows that the configurations have, on

average, lower evaluated r than the expected value.

Given the larger variation of 4-scatterer configurations,

there are many different solutions within the 105 sample

optimal configuration dataset. We follow the same proce-

dure to generate 4-scatterer configurations. The optimal con-

figuration r labels are combined with noise to generate new

configurations. After comparing with the expected TSCS,

the 4-scatterer configuration generator results in an average

MAE of 0.1561. Generated 4-scatterer images and the corre-

sponding TSCS comparison graphs are shown in Figs. 15

and 16, respectively.

IV. CONCLUSIONS

A method using generative modeling instead of optimi-

zation algorithms to determine the optimal planar configura-

tion of rigid cylinders producing near zero TSCS is

FIG. 11. (Color online) Generated (grayscale) and real (colored) images of

4-scatterer configurations. Samples are generated through the standard

image generation procedure and are filtered so that configurations with bet-

ter predicted r fit are selected.

FIG. 12. (Color online) TSCS versus ka for M¼ 4 cylinder configuration

from samples depicted in Fig. 11. Note that cWGAN is only trained for

wavenumbers ka 2 ½0:35; 0:45�. The red continuous and blue dashed lines

correspond to TSCS produced by generated and real configurations,

respectively.
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FIG. 13. WGAN generated images for optimized 2-scatterer configurations. Resulting TSCS comparison is shown in Fig. 14.

FIG. 14. (Color online) Variation of TSCS, r, with wavenumber ka 2 ½0:35; 0:45� (top row) and ka 2 ½0; 0:50� (bottom row) for optimal configurations of

M¼ 2 scatterers from the generated configurations (solid red line) in Fig. 13 compared to the expected response (dashed blue line). Most samples show a

strong correlation between the evaluated r from generated configurations and real configurations. The MAE for all generated images of samples 1–6 in the

figure across the specified wavenumber range is 0.0266 and the average error across the samples is �0.0173. The negative average error shows that the

majority of generated images have r that is lower than the expected r.

FIG. 15. Sample generated images of 4-scatterer configurations. The corresponding evaluated TSCS is shown in Fig. 16.

FIG. 16. (Color online) Variation of TSCS for 4-scatterer generated optimal configurations as shown in 16. Although the average MAE for all tested samples

is 0.1561, we examined some of the best performing generated configurations. The average MAE for the six samples shown is 0.0494 with a standard devia-

tion of 0.0173.
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introduced. By implementing the conditional functionality to

the standard WGAN51 architecture, the model is able to learn

the relation between scatterer configurations and the corre-

sponding TSCS. Additionally, applying the CoordConv layer

to the generator and critic noticeably improved the quality

and accuracy of generated designs. We use the random con-

figuration dataset to train the cWGAN and allow the model to

produce TSCS optimized designs. Resulting images and eval-

uated TSCS show the model’s capability to produce compara-

ble metacluster designs in regards to minimal TSCS.

Our generative network model was implemented based

on datasets generated by means of optical theorem which

works at normal incidence. The generative model can be

extended to minimize MS at an oblique incidence or reduce

MS by different nonuniform configurations of scatterers of

various shapes, radii, and/or material properties by develop-

ing new datasets for such cases and by using transfer learn-

ing45 to speed up training and improve the performance of

proposed generative model.

This work validates the inclusion of DL applications in

acoustic metamaterial design. However, the limitations of

this current model lie with the regressor. Given the condi-

tional design, the regressor is necessary to influence the gen-

erator to produce configurations with a specified TSCS. With

the current regressor, we see a difference in performance as

indicated in the rising MAE loss between 2-scatterer and 4-

scatterer models, 0.05 and 0.10, respectively. Incidentally, the

regressor overfits on 10-scatterer images. As a bottleneck, the

removal of the regressor for a more accurate model is impera-

tive to proceeding with more complex structures.

Further work may improve on the current generative pro-

cess by joining the cWGAN with an analytical model that can

evaluate the TSCS while providing the MAE loss to the gener-

ator. By including an analytical approach, rather than a DL

model, two important improvements can be seen: the error

inherent to CNN training is removed and the number of tun-

able parameters in the full generative model is reduced result-

ing in a model that is more robust and easier to train. Further

work will improve the capability of this model to produce

configurations with a much larger number of scatterers to be

compatible with more complex acoustic applications such as

cloaking and wave steering. To increase the number of mate-

rial properties stored in each scatterer visually, tunable color

channels may be introduced where different hues of color will

correspond to a normalized material property value.
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