114 research outputs found

    Testing Deep Learning Recommender Systems Models on Synthetic GAN-Generated Datasets

    Get PDF
    The published method Generative Adversarial Networks for Recommender Systems (GANRS) allows generating data sets for collaborative filtering recommendation systems. The GANRS source code is available along with a representative set of generated datasets. We have tested the GANRS method by creating multiple synthetic datasets from three different real datasets taken as a source. Experiments include variations in the number of users in the synthetic datasets, as well as a different number of samples. We have also selected six state-of-the-art collaborative filtering deep learning models to test both their comparative performance and the GANRS method. The results show a consistent behavior of the generated datasets compared to the source ones; particularly, in the obtained values and trends of the precision and recall quality measures. The tested deep learning models have also performed as expected on all synthetic datasets, making it possible to compare the results with those obtained from the real source data. Future work is proposed, including different cold start scenarios, unbalanced data, and demographic fairness

    Multi-Modal Self-Supervised Learning for Recommendation

    Full text link
    The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering personalized recommender systems to incorporate various modalities (eg, visual, textual and acoustic) into the latent user representations. While existing works on multi-modal recommendation exploit multimedia content features in enhancing item embeddings, their model representation capability is limited by heavy label reliance and weak robustness on sparse user behavior data. Inspired by the recent progress of self-supervised learning in alleviating label scarcity issue, we explore deriving self-supervision signals with effectively learning of modality-aware user preference and cross-modal dependencies. To this end, we propose a new Multi-Modal Self-Supervised Learning (MMSSL) method which tackles two key challenges. Specifically, to characterize the inter-dependency between the user-item collaborative view and item multi-modal semantic view, we design a modality-aware interactive structure learning paradigm via adversarial perturbations for data augmentation. In addition, to capture the effects that user's modality-aware interaction pattern would interweave with each other, a cross-modal contrastive learning approach is introduced to jointly preserve the inter-modal semantic commonality and user preference diversity. Experiments on real-world datasets verify the superiority of our method in offering great potential for multimedia recommendation over various state-of-the-art baselines. The implementation is released at: https://github.com/HKUDS/MMSSL.Comment: This paper has been published as a full paper at WWW 202

    Editable User Profiles for Controllable Text Recommendation

    Full text link
    Methods for making high-quality recommendations often rely on learning latent representations from interaction data. These methods, while performant, do not provide ready mechanisms for users to control the recommendation they receive. Our work tackles this problem by proposing LACE, a novel concept value bottleneck model for controllable text recommendations. LACE represents each user with a succinct set of human-readable concepts through retrieval given user-interacted documents and learns personalized representations of the concepts based on user documents. This concept based user profile is then leveraged to make recommendations. The design of our model affords control over the recommendations through a number of intuitive interactions with a transparent user profile. We first establish the quality of recommendations obtained from LACE in an offline evaluation on three recommendation tasks spanning six datasets in warm-start, cold-start, and zero-shot setups. Next, we validate the controllability of LACE under simulated user interactions. Finally, we implement LACE in an interactive controllable recommender system and conduct a user study to demonstrate that users are able to improve the quality of recommendations they receive through interactions with an editable user profile.Comment: Accepted to SIGIR 2023; Pre-print, camera-ready to follo

    Robust Representation Learning for Unified Online Top-K Recommendation

    Full text link
    In large-scale industrial e-commerce, the efficiency of an online recommendation system is crucial in delivering highly relevant item/content advertising that caters to diverse business scenarios. However, most existing studies focus solely on item advertising, neglecting the significance of content advertising. This oversight results in inconsistencies within the multi-entity structure and unfair retrieval. Furthermore, the challenge of retrieving top-k advertisements from multi-entity advertisements across different domains adds to the complexity. Recent research proves that user-entity behaviors within different domains exhibit characteristics of differentiation and homogeneity. Therefore, the multi-domain matching models typically rely on the hybrid-experts framework with domain-invariant and domain-specific representations. Unfortunately, most approaches primarily focus on optimizing the combination mode of different experts, failing to address the inherent difficulty in optimizing the expert modules themselves. The existence of redundant information across different domains introduces interference and competition among experts, while the distinct learning objectives of each domain lead to varying optimization challenges among experts. To tackle these issues, we propose robust representation learning for the unified online top-k recommendation. Our approach constructs unified modeling in entity space to ensure data fairness. The robust representation learning employs domain adversarial learning and multi-view wasserstein distribution learning to learn robust representations. Moreover, the proposed method balances conflicting objectives through the homoscedastic uncertainty weights and orthogonality constraints. Various experiments validate the effectiveness and rationality of our proposed method, which has been successfully deployed online to serve real business scenarios.Comment: 14 pages, 6 figures, submitted to ICD
    • …
    corecore