3 research outputs found

    Internet of Things Enabled Technologies for Behaviour Analytics in Elderly Person Care: A Survey

    Get PDF
    The advances in sensor technology over recent years has provided new ways for researchers to monitor the elderly in uncontrolled environments. Sensors have become smaller, cheaper and can be worn on the body, potentially creating a network of sensors. Smart phones are also more common in the average household and can also provide some behavioural analysis due to the built in sensors. As a result of this, researchers are able to monitor behaviours in a more natural setting, which can lead to more useful data. This is important for those that may be suffering from mental illness as it allows for continuous, non-invasive monitoring in order to diagnose symptoms from different behaviours. However there are various challenges that need to be addressed ranging from issues with sensors to the involvement of human factors. It is vital that these challenges are taken into consideration along with the major behavioural symptoms that can appear in an Elderly Person. For a person suffering with Dementia, the application of sensor technologies can improve the quality of life of the person and also monitor the progress of the disease through behavioural analysis. This paper will consider the behaviours that can be associated with dementia and how these behaviours can be monitored through sensor technology. We will also provide an insight into some sensors and algorithms gathered through survey in order to provide advantages and disadvantages of these technologies as well as to present any challenges that may face future research

    Wandering Analysis with Mobile Phones - On the Relation Between Randomness and Wandering

    No full text

    Investigation of Low-Cost Wearable Internet of Things Enabled Technology for Physical Activity Recognition in the Elderly

    Get PDF
    Technological advances in mobile sensing technologies has produced new opportunities for the monitoring of the elderly in uncontrolled environments by researchers. Sensors have become smaller, cheaper and can be worn on the body, potentially creating a network of sensors. Smart phones are also more common in the average household and can also provide some behavioural analysis due to the built-in sensors. As a result of this, researchers are able to monitor behaviours in a more naturalistic setting, which can lead to more contextually meaningful data. For those suffering with a mental illness, non-invasive and continuous monitoring can be achieved. Applying sensors to real world environments can aid in improving the quality of life of an elderly person with a mental illness and monitor their condition through behavioural analysis. In order to achieve this, selected classifiers must be able to accurately detect when an activity has taken place. In this thesis we aim to provide a framework for the investigation of activity recognition in the elderly using low-cost wearable sensors, which has resulted in the following contributions: 1. Classification of eighteen activities which were broken down into three disparate categories typical in a home setting: dynamic, sedentary and transitional. These were detected using two Shimmer3 IMU devices that we have located on the participants’ wrist and waist to create a low-cost, contextually deployable solution for elderly care monitoring. 2. Through the categorisation of performed Extracted time-domain and frequency-domain features from the Shimmer devices accelerometer and gyroscope were used as inputs, we achieved a high accuracy classification from a Convolutional Neural Network (CNN) model applied to the data set gained from participants recruited to the study through Join Dementia Research. The model was evaluated by variable adjustments to the model, tracking changes in its performance. Performance statistics were generated by the model for comparison and evaluation. Our results indicate that a low epoch of 200 using the ReLu activation function can display a high accuracy of 86% on the wrist data set and 85% on the waist data set, using only two low-cost wearable devices
    corecore