6 research outputs found

    A Novel Hybrid Scheme Using Genetic Algorithms and Deep Learning for the Reconstruction of Portuguese Tile Panels

    Full text link
    This paper presents a novel scheme, based on a unique combination of genetic algorithms (GAs) and deep learning (DL), for the automatic reconstruction of Portuguese tile panels, a challenging real-world variant of the jigsaw puzzle problem (JPP) with important national heritage implications. Specifically, we introduce an enhanced GA-based puzzle solver, whose integration with a novel DL-based compatibility measure (DLCM) yields state-of-the-art performance, regarding the above application. Current compatibility measures consider typically (the chromatic information of) edge pixels (between adjacent tiles), and help achieve high accuracy for the synthetic JPP variant. However, such measures exhibit rather poor performance when applied to the Portuguese tile panels, which are susceptible to various real-world effects, e.g., monochromatic panels, non-squared tiles, edge degradation, etc. To overcome such difficulties, we have developed a novel DLCM to extract high-level texture/color statistics from the entire tile information. Integrating this measure with our enhanced GA-based puzzle solver, we have demonstrated, for the first time, how to deal most effectively with large-scale real-world problems, such as the Portuguese tile problem. Specifically, we have achieved 82% accuracy for the reconstruction of Portuguese tile panels with unknown piece rotation and puzzle dimension (compared to merely 3.5% average accuracy achieved by the best method known for solving this problem variant). The proposed method outperforms even human experts in several cases, correcting their mistakes in the manual tile assembly

    Solving Jigsaw Puzzles By the Graph Connection Laplacian

    Full text link
    We propose a novel mathematical framework to address the problem of automatically solving large jigsaw puzzles. This problem assumes a large image, which is cut into equal square pieces that are arbitrarily rotated and shuffled, and asks to recover the original image given the transformed pieces. The main contribution of this work is a method for recovering the rotations of the pieces when both shuffles and rotations are unknown. A major challenge of this procedure is estimating the graph connection Laplacian without the knowledge of shuffles. We guarantee some robustness of the latter estimate to measurement errors. A careful combination of our proposed method for estimating rotations with any existing method for estimating shuffles results in a practical solution for the jigsaw puzzle problem. Numerical experiments demonstrate the competitive accuracy of this solution, its robustness to corruption and its computational advantage for large puzzles

    An extension of the angular synchronization problem to the heterogeneous setting

    Get PDF
    Given an undirected measurement graph G = ([n], E), the classical angular synchronization problem consists of recovering unknown angles θ1,. .. , θn from a collection of noisy pairwise measurements of the form (θi − θj) mod 2π, for each {i, j} ∈ E. This problem arises in a variety of applications, including computer vision, time synchronization of distributed networks, and ranking from preference relationships. In this paper, we consider a generalization to the setting where there exist k unknown groups of angles θ_{l,1} ,. .. , θ_{l,n} , for l = 1,. .. , k. For each {i, j} ∈ E, we are given noisy pairwise measurements of the form θ ,i − θ ,j for an unknown ∈ {1, 2,. .. , k}. This can be thought of as a natural extension of the angular synchronization problem to the heterogeneous setting of multiple groups of angles, where the measurement graph has an unknown edge-disjoint decomposition G = G1 ∪ G2. .. ∪ G k , where the Gi's denote the subgraphs of edges corresponding to each group. We propose a probabilistic generative model for this problem, along with a spectral algorithm for which we provide a detailed theoretical analysis in terms of robustness against both sampling sparsity and noise. The theoretical findings are complemented by a comprehensive set of numerical experiments, showcasing the efficacy of our algorithm under various parameter regimes. Finally, we consider an application of bi-synchronization to the graph realization problem, and provide along the way an iterative graph disentangling procedure that uncovers the subgraphs Gi, i = 1,. .. , k which is of independent interest, as it is shown to improve the final recovery accuracy across all the experiments considered

    Electronic Imaging & the Visual Arts. EVA 2019 Florence

    Get PDF
    The Publication is following the yearly Editions of EVA FLORENCE. The State of Art is presented regarding the Application of Technologies (in particular of digital type) to Cultural Heritage. The more recent results of the Researches in the considered Area are presented. Information Technologies of interest for Culture Heritage are presented: multimedia systems, data-bases, data protection, access to digital content, Virtual Galleries. Particular reference is reserved to digital images (Electronic Imaging & the Visual Arts), regarding Cultural Institutions (Museums, Libraries, Palace - Monuments, Archaeological Sites). The International Conference includes the following Sessions: Strategic Issues; New Science and Culture Developments & Applications; New Technical Developments & Applications; Cultural Activities – Real and Virtual Galleries and Related Initiatives, Access to the Culture Information. One Workshop regards Innovation and Enterprise. The more recent results of the Researches at national and international level are reported in the Area of Technologies and Culture Heritage, also with experimental demonstrations of developed Activities
    corecore