2,904 research outputs found

    Movement variability in stroke patients and controls performing two upper limb functional tasks: a new assessment methodology

    Get PDF
    Background: In the evaluation of upper limb impairment post stroke there remains a gap between detailed kinematic analyses with expensive motion capturing systems and common clinical assessment tests. In particular, although many clinical tests evaluate the performance of functional tasks, metrics to characterise upper limb kinematics are generally not applicable to such tasks and very limited in scope. This paper reports on a novel, user-friendly methodology that allows for the assessment of both signal magnitude and timing variability in upper limb movement trajectories during functional task performance. In order to demonstrate the technique, we report on a study in which the variability in timing and signal magnitude of data collected during the performance of two functional tasks is compared between a group of subjects with stroke and a group of individually matched control subjects. Methods: We employ dynamic time warping for curve registration to quantify two aspects of movement variability: 1) variability of the timing of the accelerometer signals' characteristics and 2) variability of the signals' magnitude. Six stroke patients and six matched controls performed several trials of a unilateral ('drinking') and a bilateral ('moving a plate') functional task on two different days, approximately 1 month apart. Group differences for the two variability metrics were investigated on both days. Results: For 'drinking from a glass' significant group differences were obtained on both days for the timing variability of the acceleration signals' characteristics (p = 0.002 and p = 0.008 for test and retest, respectively); all stroke patients showed increased signal timing variability as compared to their corresponding control subject. 'Moving a plate' provided less distinct group differences. Conclusion: This initial application establishes that movement variability metrics, as determined by our methodology, appear different in stroke patients as compared to matched controls during unilateral task performance ('drinking'). Use of a user-friendly, inexpensive accelerometer makes this methodology feasible for routine clinical evaluations. We are encouraged to perform larger studies to further investigate the metrics' usefulness when quantifying levels of impairment

    Standardized loads acting in knee implants

    Get PDF
    The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372–4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure

    Using wearable inertial sensors to compare different versions of the dual task paradigm during walking

    Get PDF
    The dual task paradigm (DTP), where performance of a walking task co-occurs with a cognitive task to assess performance decrement, has been controversially mooted as a more suitable task to test safety from falls in outdoor and urban environments than simple walking in a hospital corridor. There are a variety of different cognitive tasks that have been used in the DTP, and we wanted to assess the use of a secondary task that requires mental tracking (the alternate letter alphabet task) against a more automatic working memory task (counting backward by ones). In this study we validated the x-io x-IMU wearable inertial sensors, used them to record healthy walking, and then used dynamic time warping to assess the elements of the gait cycle. In the timed 25 foot walk (T25FW) the alternate letter alphabet task lengthened the stride time significantly compared to ordinary walking, while counting backward did not. We conclude that adding a mental tracking task in a DTP will elicit performance decrement in healthy volunteers

    Assessment of knee flexion in young children with prosthetic knee components using dynamic time warping

    Get PDF
    Introduction: Analysis of human locomotion is challenged by limitations in traditional numerical and statistical methods as applied to continuous timeseries data. This challenge particularly affects understanding of how close limb prostheses are to mimicking anatomical motion. This study was the first to apply a technique called Dynamic Time Warping to measure the biomimesis of prosthetic knee motion in young children and addressed the following research questions: Is a combined dynamic time warping/root mean square analysis feasible for analyzing pediatric lower limb kinematics? When provided at an earlier age than traditional protocols dictate, can children with limb loss utilize an articulating prosthetic knee in a biomimetic manner? Methods: Warp costs and amplitude differences were generated for knee flexion curves in a sample of ten children five years of age and younger: five with unilateral limb loss and five age-matched typically developing children. Separate comparisons were made for stance phase flexion and swing phase flexion via two-way ANOVAs between bilateral limbs in both groups, and between prosthetic knee vs. dominant anatomical knee in age-matched pairs between groups. Greater warp costs indicated greater temporal dissimilarities, and a follow-up root mean square assessed remaining amplitude dissimilarities. Bilateral results were assessed by age using linear regression. Results: The technique was successfully applied in this population. Young children with limb loss used a prosthetic knee biomimetically in both stance and swing, with mean warp costs of 12.7 and 3.3, respectively. In the typically developing group, knee motion became more symmetrical with age, but there was no correlation in the limb loss group. In all comparisons, warp costs were significantly greater for stance phase than swing phase. Analyses were limited by the small sample size. Discussion: This study has established that dynamic time warping with root mean square analysis can be used to compare the entirety of time-series curves generated in gait analysis. The study also provided clinically relevant insights on the development of mature knee flexion patterns during typical development, and the role of a pediatric prosthetic knee

    Objective assessment of movement disabilities using wearable sensors

    Full text link
    The research presents a series of comprehensive analyses based on inertial measurements obtained from wearable sensors to quantitatively describe and assess human kinematic performance in certain tasks that are most related to daily life activities. This is not only a direct application of human movement analysis but also very pivotal in assessing the progression of patients undergoing rehabilitation services. Moreover, the detailed analysis will provide clinicians with greater insights to capture movement disorders and unique ataxic features regarding axial abnormalities which are not directly observed by the clinicians
    • …
    corecore