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Abstract 

Individuals with unilateral transtibial amputations (ITTAs) are at a greater risk of 

developing knee joint degenerative diseases in the intact limb compared to the 

general population. However, equivocal results from walking gait literature have found 

limited differences in load between the intact limb of ITTAs and control limbs. This 

thesis postulated that 1) data extraction of discrete points in loading signals are 

inconsistent; 2) other loading features, not previously considered, may more 

appropriately quantify load; and 3) overloading may be more prominent in tasks which 

have greater loading and joint movement demands. Therefore, this thesis aimed to 

determine if the intact limb of ITTAs had significantly different limb and knee joint 

loading patterns and underpinning mechanics compared to able-bodied controls 

during high loading activities. Eight ITTAs and twenty-two controls performed step 

descent and unilateral and bilateral drop landing tasks as experimental models to 

increase load. Loading waveforms were assessed using statistical parametric 

mapping as an alternative to discrete point analysis. Waveform analysis was able to 

identify loading rates (rather than peak magnitudes) as important measures of load 

and identify additional phases of interest when loading the limb. Anterior-posterior 

loading was also found to be an important feature in addition to the commonly 

examined loading features. The intact limb of ITTAs in this thesis was able to adapt 

to higher loading activities by adopting joint mechanics similar to controls despite 

reductions in quadriceps strength. Therefore, few differences were found in the 

whole-limb and knee joint loading patterns. This would suggest that high load in the 

intact limb compared to a control limb may not suggest an increased risk of knee joint 

degeneration but rather the asymmetry between prosthetic and intact limbs. 

Additionally, it is just as plausible to suggest that high limb loading is not the 

mechanism of injury in ITTAs.  
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Chapter 1.  

Introduction 

 

Individuals with unilateral transtibial amputations (ITTAs) have undergone the 

surgical removal of the lower leg on one side resulting in the loss of the ankle joint 

and surrounding musculature (Neptune et al., 2001, Silverman et al., 2008). ITTAs 

perform altered movement patterns compared to able-bodied individuals due to the 

decreased capacity of the prosthetic limb to mimic the functionality of the intact ankle 

joint (Hurley et al., 1990). This possibly results in higher loading experienced in the 

intact limb (Gailey et al., 2008). Mechanical loading of a joint is necessary for the 

maintenance of cellular homeostasis in healthy joint cartilage (Farrokhi et al., 2016); 

however, excessive loading is thought to place joints at risk of developing loading 

related diseases, such as osteoarthritis (Griffin & Guilak, 2005, Egloff et al., 2012). 

As the intact limb of ITTAs is at a 25-28% greater risk of developing knee pain and 

subsequent degenerative conditions than able-bodied individuals (Struyf et al., 2009, 

Norvell et al., 2005, Melzer et al., 2001), it would be expected that greater intact limb 

loading would be present compared to a control limb. However, equivocal results 

have been found in level-walking gait when comparing the load experienced in an 

intact ITTA limb to a control limb. For example, peak knee external adduction moment 

(KAM; a common measure of medial knee joint loading) has been found to be greater 

in the intact limb of some studies (Royer & Koenig, 2005, Grabowski & D’Andrea, 

2013, Lloyd et al., 2010) and lower in other studies (Esposito & Wilken, 2014, Rueda 

et al., 2013). None of these studies found significant differences between ITTAs and 

their control cohorts. 
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Ambiguity related to the presence of overloading in the intact limb of ITTAs may be 

due to the reduction of loading waveforms to discrete points (e.g., peak magnitude), 

which are assumed to best represent the waveform. Reducing highly multivariate 

datasets to discrete points may result in the loss of valuable information (Pataky et 

al., 2013). An alternative method to discrete point analysis, and one which has been 

growing in popularity in the field of biomechanics, is waveform analysis. This 

approach has been demonstrated to provide greater insight into the task mechanisms 

beyond that which is examined by discrete point analysis (Ramsay & Silverman, 

2002, Warmenhoven et al., 2018, Richter et al., 2014b, Godwin et al., 2010). 

Statistical parametric mapping is a type of waveform analysis used for hypothesis-

driven testing to capture phases of covariance between multivariate datasets 

(Robinson et al., 2015). Statistical parametric mapping of the waveforms which hold 

the currently established discrete loading features may indicate more appropriate 

phases of overloading that could indicate an increased risk of developing 

degenerative diseases in ITTAs. Further, limb and joint loading are most commonly 

assessed through the vertical ground reaction force and KAM. Recent research has 

suggested that other loading features, such as the knee external flexor moment and 

joint intersegmental forces, may contribute to joint degeneration (Creaby, 2015, 

Silverman & Neptune, 2014, Walter et al., 2010).  

Altered movement strategies that are adopted following amputation (Burke et al., 

1978, Nolan et al., 2003, Sadeghi et al., 1997) have been thought to influence the 

loading patterns in the intact limb of ITTAs (Gailey et al., 2008, Radin & Paul, 1971). 

These alterations are postulated to result in the increased risk of joint degeneration. 

Thus, ITTAs are an ideal model for understanding the pathogenesis of degenerative 

diseases. Typically, movement patterns are assessed through individual joint motion 

in the limb of interest, yet movement is produced through the coordination of joints 

and limbs. Coordination can represent a measure of the interaction between joints 
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which may provide in-depth knowledge on the mechanisms underpinning high limb 

loading (van Emmerik et al., 2016, Chiu & Chou, 2012, Nematollahi et al., 2016). 

Further, the dynamic walking theory introduces the concept of a between-limb 

influence (Kuo, 2007). In ITTAs, reduced prosthetic limb push-off work at the ankle 

joint has been associated with increased peak KAM in the contralateral intact limb 

(Morgenroth et al., 2011). However, this theory has only been applied to level-walking 

gait and it is unclear if this exists in other continuous anti-phase tasks such as step 

descent.  

It is also possible that ITTAs do not experience overloading in the intact limb 

compared to able-bodied controls during walking gait. Tasks other than level-walking, 

such as step descent, have indicated greater vertical ground reaction forces are 

experienced and require greater joint motion to complete the task (Christina & 

Cavanagh, 2002) and, therefore, may require investigation. It is plausible to suggest 

that overloading, associated with an increased risk of degenerative conditions, may 

be present when performing higher impact activities. Step descent is an extension of 

level-walking gait and is a functional task performed daily, yet the development of 

load and movement strategies utilised in established ITTAs have not been examined. 

Compensatory joint mechanics that may underpin high load in the intact limb when 

leading during a step descent could indicate areas of focus for rehabilitation and 

exercise protocols.  

One approach that may improve our understanding of the loading patterns in the 

intact limb of ITTAs is through the assessment of drop landings. Unilateral drop 

landings provide a controlled task in which the effects from the altered joint mechanics 

of the prosthetic limb and requirements for forward progression are absent. Removal 

of these influences could suggest if inherent deficiencies exist in the intact limb post-

amputation. In this high impact activity, deficiencies in muscle strength of the knee 

extensors may also influence load attenuation. Drop landings are, therefore, a good 
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model to assess the influence of muscle strength when other influences are 

controlled. Two key measures of muscle strength are maximal and explosive force 

production. Decreased maximum muscle strength has been suggested as an 

indication of increased limb loading (Egloff et al., 2012, Lloyd et al., 2010) and has 

been associated with alterations in movement patterns in the trunk and lower-limbs 

that may increase the risk of injury (Blackburn & Padua, 2008, Blackburn & Padua, 

2009, Hewett et al., 2005, Markolf et al., 1978). Generation of rapid muscle force (i.e. 

explosive strength) is important for stabilisation of the lower-limb joints (Tillin et al., 

2013, Andersen & Aagaard, 2006, Aagaard et al., 2002) as dynamic actions, such as 

landing from a jump, involve shorter contraction times (<50 ms) than it typically takes 

to generate maximal force (~300 ms) (Buckthorpe & Roi, 2017). The inability to 

develop muscular force rapidly, as required when landing from a jump, can 

additionally lead to various injuries including joint degeneration and non-specific knee 

pain (Aerts et al., 2013). Additionally, bilateral landings are present in many sporting 

activities (e.g. basketball, volleyball) where between-limb influences may impact the 

magnitude and rate of load experienced in the intact limb further leading to injury. For 

this reason, ITTAs are commonly encouraged to participate in sitting or wheelchair 

adapted sports which could limit the cardiovascular benefits of exercise (Chapman, 

2008, Sanderson & Martin, 1996). However, there is limited evidence to suggest that 

ITTAs experience increased forces during landings compared to able-bodied 

controls. 

The purpose of this thesis was, therefore, to 1) provide a greater understanding of 

the loading patterns experienced in the intact limb of ITTAs during step descent and 

drop landing tasks by utilising waveform analysis and 2) examine the joint mechanics, 

including joint coordination, that could influence these loading patterns. Insight into 

the joint mechanics utilised to attenuate load could provide information to clinicians 

for development of rehabilitation and exercise protocols.  
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Chapter 2.  

Literature Review & Waveform 

Analysis Methodology 

 

Part One: Literature Review 

This literature review will discuss the previously researched features of limb and joint 

loading and the limitations of these features in relation to individuals with transtibial 

amputations (ITTAs). Forces (load) acting on the body can be mediated by segment 

motion and muscular contractions. Therefore, a review of the movement mechanics 

adopted by ITTAs during walking gait will highlight possible compensatory strategies 

that could be expected in the analysis of a step descent. Finally, the joint mechanics 

of step descent and drop landing movements will be examined to aid in the 

interpretation of the results in the experimental chapters. 

The articles in this literature review were included based on a systematic search 

strategy. The following databases were searched: Cochrane Library, PubMed, 

Science Direct, and Google Scholar. Each database was searched using the following 

keyword phrases (and synonyms): amputees, osteoarthritis, knee joint, loading, step 

descent, landing, and quadriceps strength. Able-bodied articles were included to aid 

in comparisons. Articles were excluded from the final literature review if they were 

non-English full text. It is possible that the findings from this literature review are 

subject to publication bias. 
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2.1. Loading Features 

Mechanical loading of a joint is necessary for the maintenance of healthy joint 

cartilage (Farrokhi et al., 2016); however, too much loading can place joints at risk of 

developing loading related diseases (Radin & Paul, 1971). Loading is broadly defined 

as the forces acting on the body or joint where injuries can occur when these forces 

exceed certain limits on any one element in the kinematic chain. The knee joint, in 

particular, is at a higher risk of injury as it is subject to greater translation forces in 

dynamic movement compared to the hip and ankle joints (Egloff et al., 2012). Many 

studies exploring knee joint loading focus on the medial knee compartment as 60-

80% of total knee joint loading is transmitted across the medial side of the knee 

(Erhart et al., 2010). There is a wide base of research that provides robust, well-

evidence loading features to represent medial compartment knee joint loading in both 

able-bodied (Miyazaki et al., 2002, Egloff et al., 2012) and other injury populations 

(Øiestad et al., 2009, Levinger et al., 2008). Loading features that have been linked 

to the onset and progression of medial compartment joint degeneration are the knee 

external adduction moment (KAM) and vertical ground reaction force (vGRF) (Egloff 

et al., 2012, Henriksen et al., 2006, Gailey et al., 2008, Morgenroth et al., 2014). 

KAM is commonly used to estimate medial knee joint loading as it has been 

associated with the severity of joint degeneration, rate of progression, and treatment 

outcomes (Miyazaki et al., 2002, Vanwanseele et al., 2010, Thorp et al., 2006, 

Sharma et al., 2003). It was found that for every unit increase in peak KAM, there was 

a 6.5-unit increase in the risk of developing knee joint comorbidities (Miyazaki et al., 

2002, Egloff et al., 2012). This occurred independent of bodyweight and static 

misalignment contributions which have also been suggested as indicators for an 

increased risk of joint degeneration. A meta-analysis performed by Henriksen et al. 

(2006) on five able-bodied studies, further found a positive relationship between peak 

KAM and osteoarthritis progression. Not specific to the knee joint, vGRF is a whole-
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body measure of force where higher forces have been associated with knee pain (de 

Oliveira Silva et al., 2015) and various knee joint injuries (Mündermann et al., 2005, 

Hunt et al., 2006, Hunt et al., 2010). These studies denote the importance of 

examining KAM and vGRF as potential indicators for the onset and progression of 

knee joint degeneration. 

KAM and vGRF waveforms are commonly reduced to discrete features (peak 

magnitude and loading rate) when assessing populations with joint degenerative 

diseases. Peak magnitudes represent the maximal load experienced. Loading rates 

provide an ability to measure how quickly the load is delivered to the body over a 

certain time phase (Cheung & Rainbow, 2014). It has been suggested that loading 

rates may be a more relevant measure than peak magnitudes in assessing joint 

loading and injury occurrence (Morgenroth et al., 2014). In a study conducted on 

rabbits in vivo, higher loading rates led to greater cartilage degeneration than with 

lower loading rates, even when the latter had a higher peak magnitude of load (Boyd 

et al., 1991). Mündermann et al. (2005) found able-bodied the vGRF loading rate was 

50.1% greater in those with knee osteoarthritis than matched controls while peak 

vGRF was not significantly different. This could suggest that temporal-spatial patterns 

in the loading waveforms are important and should be further examined.  

In ITTAs, however, both peak magnitudes and loading rates during level-walking gait 

have provided inconclusive evidence that overloading is occurring in the intact limb 

compared to able-bodied controls (Table 2.1). This is unexpected given the increased 

risk of developing loading comorbidities in the intact limb of ITTAs (Struyf et al., 2009, 

Norvell et al., 2005, Melzer et al., 2001). Table 2.1 presents the commonly researched 

discrete loading features from the few ITTA studies that examined the differences 

between intact and control limbs when walking at similar speeds (1.2 - 1.3 m/s). For 

peak magnitudes, only one study found a significantly greater peak vGRF in the intact 

limb (Grabowski & D’Andrea, 2013). The other studies found no significant differences 
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for peak vGRF or KAM. Interestingly, two of the six studies (Esposito & Wilken, 2014, 

Rueda et al., 2013) found peak KAM to be lower in the intact limb than the control 

limb, and one study (Sanderson & Martin, 1997) found peak vGRF to be lower in the 

intact limb. These results were not statistically significant. This further suggests that 

peak magnitudes may not best represent any overloading that may be occurring in 

the intact limb of ITTAs, if it is a mechanism of joint degeneration in this population. 

There have been limited studies exploring loading rates in the amputee population 

(Table 2.1). Grabowski & D’Andrea (2013) found significantly higher vGRF loading 

rates in the intact limb compared to a control limb. The other studies found no 

significant differences for either vGRF or KAM loading rates. Although not significant, 

all except one study (Esposito & Wilken, 2014) found the intact limb to experience a 

higher rate of load than the control limb for both vGRF and KAM. The study conducted 

by Esposito & Wilken (2014) found a non-significant lower vGRF loading rate in the 

intact limb compared to the control limb yet a non-significant greater peak vGRF. 

Morgenroth et al. (2014) conducted a study on the relationship between joint loading 

risk factors and cartilage degeneration in the intact limb of transfemoral amputees. A 

direct relationship to cartilage degeneration with peak KAM (linear regression slope 

= 0.42 [SE = 0.20], p = 0.037) and KAM loading rate (linear regression slope = 12.3 

[SE = 3.2], p = 0.0004) was found. However, peak KAM was no longer related to 

cartilage degeneration when the regression considered KAM loading rate as an 

independent covariate. This suggests that the rate at which load is absorbed (i.e. 

temporal-spatial characteristics) is an important factor in the development of loading 

related diseases.  
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The results from previous walking gait research on lower-limb amputees demonstrate 

ambiguity amongst the commonly researched discrete loading features on if 

overloading occurs in the intact limb of ITTAs. Thus, it is possible that these discrete 

loading features may not be the best reductions of the loading waveforms. Further, it 

is possible that overloading may be present in other measures of medial knee joint 

compartment loading such as intersegmental knee joint contact forces. Joint 

intersegmental forces are not widely assessed in the literature yet have been 

considered in ITTAs given the ambiguity in vGRF and KAM features in this population 

(Fey & Neptune, 2012, Silverman & Neptune, 2014, Karimi et al., 2017). Fey & 

Neptune (2012) and Karimi et al. (2017) found no significant differences in peak knee 

joint contact forces between intact and control limbs in the anterior, medial, and 

vertical (compressive) directions. In contrast, Silverman & Neptune (2014) found peak 

knee joint contact forces in the intact limb to be greater compared to both control and 

prosthetic limbs. They also found that the anterior and medial knee impulse forces 

during stance were greater in the intact limb compared to a control limb. However, 

the compressive knee force impulse was greater in the control limb. As the duration 

of the stance phase was similar between the intact and control limbs (0.82 s vs 0.80 

s, respectively), the overall magnitude of the compressive knee force was greater in 

the control limb. This indicates that the waveform pattern may be important when 

assessing the intersegmental knee forces. Furthermore, these studies have indicated 

conflicting results on the presence of overloading in the intact limb when assessing 

knee joint contact forces in walking gait. It could be suggested that overloading may 

not be present during level-walking gait but rather in other high impact activities.  

When the quadriceps are activated during walking gait, they produce an internal knee 

extension moment in response to the external knee flexion moment (KFM). 

Quadriceps activation imparts a compressive force at the knee joint which is 

postulated to be associated with medial knee compartment loading (Creaby, 2015). 
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Manal et al. (2015) found that peak KAM alone could account for 63% of the variance 

in medial knee forces, while inclusion of peak KFM increased the prediction power by 

22%. They additionally investigated the force patterns of individual participants and 

found that when medial knee forces were similar there could be a different 

contribution from KAM and KFM. In some instances, peak KFM contributed to the 

medial knee forces to a greater extent than peak KAM. Walter et al. (2010) 

investigated gait modification strategies that have been demonstrated to reduce the 

magnitude of peak KAM to determine their influence of medial contact forces. While 

decreases in peak KAM were present, there was a corresponding increase in peak 

KFM. Therefore, peak medial contact forces were not reduced. These studies suggest 

that KFM is an important feature to examine in the development of joint degeneration 

and should be considered to provide more accurate representations of any changes 

in medial knee compartment loading (Creaby, 2015, Richards et al., 2018). KFM has 

not been investigated as a feature of high load in the ITTA population. 

Inconclusive results from the limited amputee studies examining intact limb loading 

compared to controls suggest that 1) the reduction of loading waveforms to discrete 

points may ignore other phases of interest in the loading waveforms, 2) other 

measures of load (e.g. KFM) could indicate overloading in the intact limb, and 3) 

overloading may occur in high impact activities rather than level-walking gait. 

2.2. Compensatory Movement Strategies 

Through the impulse-momentum relationship, the magnitude of the vertical impulse 

absorbed when loading a limb can be mediated by changes in momentum. The 

downward-forward momentum of the centre of mass (CoM) during initial loading of a 

limb is controlled through joint/segment motion and muscular contraction. In running 

and landing tasks, the lower-limbs can be viewed as a simple spring-mass model with 

the joints of the limb contributing to the deformation of the spring (Blickhan, 1989). As 

greater forces are absorbed by the body, greater resistance (stiffness) from the joints 
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is required to produce controlled movements. While some level of stiffness is 

necessary in the performance of a task, too much stiffness may result in injury (Butler 

et al., 2003). Stiffness is broadly examined through the applied force and 

displacement of the joint. Thus, greater stiffness is associated with increased peak 

forces and reduced joint flexion and range of motion (ROM) (McMahon & Cheng, 

1990) which is thought to lead to joint degeneration. Eccentric muscular contraction 

of the knee extensors also acts as a shock absorption mechanism to absorb the 

negative mechanical work done during the loading response phase of stance 

(LaStayo et al., 2003, Zhang et al., 2000). Muscle force produced by the knee 

extensors can increase the duration of absorption phase (Rudenko et al., 2016) 

providing greater time for joint flexion to occur and reducing peak forces and joint 

power. A spring-mass model is a useful model to indicate the shock absorption 

mechanisms of a limb. However, a spring-mass model is not applicable to walking 

gait as this task is not a conserved system. Thus, the dynamic walking theory was 

developed to examine the energy transfer between-limbs.  

2.2.1. Dynamic Walking Theory 

Dynamic walking theory builds on the basic premise of the passive inverted pendulum 

model (Cavagna et al., 1976) and the six determinants of gait model (Saunders et al., 

1953) by examining the phase where energy is expended. In the inverted pendulum 

model, the CoM moves in an arc-like trajectory over a straight stance leg using 

gravitational potential energy for forward progression. By utilising an extended knee 

during single support, the muscle force needed to support body weight is reduced 

thereby theoretically requiring no mechanical work (Kuo & Donelan, 2010). According 

to the model, if the CoM moves like a pendulum, there should be no energy cost at 

all. However, the inverted pendulum model fails as some energy is expended during 

walking in order to maintain forward progression (Kuo et al., 2005). This energy cost 

has been associated with the double support phase, the ‘step-to-step transition’, when 
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the legs cannot function as a true pendulum (Kuo, 2007). The goal of the step-to-step 

transition is to change the direction of the CoM velocity from a downward-forward to 

an upward-forward trajectory to continue horizontal progression at a consistent 

speed. This redirection can be viewed by the vGRF impulse (the force-time integral) 

interaction between push-off from the trailing limb and braking of the leading limb 

(Adamczyk & Kuo, 2009, Gard & Childress, 1999, Morgenroth et al., 2011). Dynamic 

walking models show that a reduced push-off impulse from the trailing limb leads to 

an increased leading limb impulse (Kuo & Donelan, 2010, Kuo et al., 2005, Donelan 

et al., 2002a, Morgenroth et al., 2011, Adamczyk & Kuo, 2009).  

In these models, a theoretical link was made between trailing limb impulse and lead 

limb loading (Kuo, 2007, Vanderpool et al., 2008). Morgenroth et al. (2011) was one 

of the first studies to explore the between-limb influence in the ITTA population. ITTAs 

were utilised as this group has been shown in previous literature to have a reduced 

push-off capacity from the prosthetic trailing limb and higher limb loading on the 

leading intact limb compared to the prosthetic limb. This study firstly confirmed the 

negative relationship between trailing limb impulse and leading limb impulse (slope = 

-0.34 [SE = 0.14], p = 0.001) validating this aspect of the dynamic walking models. 

Secondly, there was a significant relationship between trailing limb prosthetic push-

off work and peak KAM in the leading limb (slope = -0.72 [SE = 0.22], p = 0.011). This 

suggests that increasing the push-off capacity of the prosthetic ankle joint could lower 

the magnitude of intact limb loading. These results were compared with a powered 

dynamic elastic response prosthetic which utilises motorised components to provide 

additional energy in propulsion. A 68% increase in push-off work on the prosthetic 

limb was found, with only a 10% reduction in peak KAM on the intact limb. Similar 

results were found in other amputee studies utilising a powered dynamic elastic 

response prosthetic (Grabowski & D’Andrea, 2013, Esposito & Wilken, 2014). 

Esposito & Wilken (2014) found a significant 6.4% reduction in peak vGRF and 23% 
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reduction in vGRF loading rate compared to prostheses without motorised 

components when walking at similar speeds to the Morgenroth et al. (2011) study 

(1.25 m/s vs 1.14 m/s, respectively). Grabowski & D’Andrea (2013) also found a 

significant 7.2% reduction in peak vGRF when walking at 1.25 m/s. Both Esposito & 

Wilken (2014) and Grabowski & D’Andrea (2013) only found significant reductions in 

peak KAM when walking speeds were between 1.5 - 1.75 m/s which requires 

increased propulsion to maintain greater speeds. These studies indicate that 

propulsion from the ankle joint is associated with contralateral limb loading, however, 

speed and joint mechanics beyond that of the ankle may additionally play a role in 

contralateral load reduction. 

The step-to-step transition has been defined as the phase in which energy is 

expended, thus, research has focused on the double support phase (Kuo, 2007). 

While much of the energy transfer between limbs to continue forward progression 

does occur during double support, further research has suggested that energy is 

expended prior to and after double support (Adamczyk & Kuo, 2009). Energy 

expenditure can occur for up to 20-27% of stance. This was determined based on the 

beginning of trailing limb push-off work and end of lead limb collision work. Donelan 

et al. (2002b) also indicated that in certain individuals the negative work done in the 

leading limb continued to occur after double support ended. These studies suggest 

that between-limb influences can occur outside of the double support phase. 

While the dynamic walking theory is related to the energetic cost of walking, the 

underlying principle states there is a between-limb influence in order to produce 

movement efficiently. Therefore, this theory can be applied to kinematic and kinetic 

features to examine the influence of movement strategies on loading patterns. In the 

ITTA population, research has suggested the importance of the influence from the 

reduced prosthetic ankle joint propulsion on intact limb loading (Morgenroth et al., 

2011, Kuo, 2007). However, the dynamic walking theory has yet to be applied to other 
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joints on the prosthetic limb or to any joint motion occurring on the intact limb when 

loading the limb. This could provide additional information on the involvement of 

movement patterns associated with high limb loading beyond that of the ankle joint.  

2.2.2. ITTA Walking Gait 

Previous ITTA research has suggested greater intact limb loading stems from altered 

movement patterns due to the functional loss of the ankle plantarflexors following 

amputation (Morgenroth et al., 2011, Nolan & Lees, 2000). As limited research has 

assessed both step descent and drop landing movement strategies in the ITTA 

population, compensatory strategies presented in walking gait literature can aid in the 

development of hypotheses. ITTAs perform compensatory movement patterns during 

the step-to-step transition of the walking gait cycle in order to load the limb and 

continue forward progression at a consistent speed. These compensations can be 

examined by comparing joint mechanics of ITTAs to those performed by able-bodied 

individuals and may aid in understanding the influence of joint mechanics on limb 

loading. Typically, in biomechanics, movement patterns are assessed from a 

combination of temporal-spatial features (e.g., walking speed), kinematics (e.g., 

individual joint angular motion), and kinetics (e.g., joint power).  

2.2.2.1. Temporal-Spatial Features 

Table 2.2 presents temporal-spatial characteristics for ITTAs and able-bodied 

controls. In ITTAs, between-limb asymmetries are found where the intact limb, as 

compared to the prosthetic limb, has a shorter step length (Howard et al., 2013, 

Sanderson & Martin, 1997, de Cerqueira Soares et al., 2009) and increased stance, 

single limb support and double limb support duration (Isakov et al., 2000, Mattes et 

al., 2000, Kovač et al., 2010). Able bodied individuals are found to have 98% 

between-limb symmetry in step length and 90-96% symmetry in single support and 

double support stance duration, respectively (Oberg et al., 1993, Hirokawa, 1989, 

Kovač et al., 2010).  
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Table 2.2. Temporal-spatial characteristics for the intact and prosthetic limbs of 
unilateral transtibial amputees and between-limb averages for able-bodied controls 

 Intact Prosthetic Control 

Step Length (m) 0.64 – 0.69 0.69 – 0.74 0.64 

Stance Duration (s) 0.71 – 0.74 0.68 – 0.71 0.68 

Single Support (s) 0.44 – 0.58 0.41 – 0.55 0.55 

Double Support (s) 0.13 0.12 0.13 

Walking Speed (m/s) 1.25 1.4 

 

The range of data presented in Table 2.2 for ITTAs is possibly due to differences in 

prosthetic components, length of time since amputation, activity level and/or walking 

speed. ITTAs are found to have an overall slower habitual walking speed compared 

to able-bodied individuals (Sanderson & Martin, 1997, Oberg et al., 1993). This is 

consistent with significant differences found in cadence between ITTAs (105 ± 7.5 

steps/min) and able-bodied individuals (110-120 steps/min; Kovač et al., 2010). As 

walking speed increases, step length increases while the stance phase duration 

shortens. Previous research in ITTAs has suggested temporal-spatial between-limb 

asymmetry remains the same regardless of overall walking speed (Isakov et al., 1996, 

Nolan et al., 2003). This indicates that temporal-spatial changes with speed occur to 

the same magnitude in both limbs. 

2.2.2.2. Kinematic and Kinetic Features 

The most notable difference between ITTAs and able-bodied individuals is within the 

sagittal plane ankle joint motion of the prosthetic limb. When loading the limb, an able-

bodied ankle joint undergoes approximately 10° of plantarflexion controlled by a small 

internal ankle dorsiflexor moment to bring the foot flat with the ground. The ankle joint 

also plays a crucial role in producing the propulsive power (A2S power generation 

burst) required to continue forward progression (Winter & Sienko, 1988, Sanderson 

& Martin, 1997). Winter (1983) noted that the ankle plantarflexors produce over 80% 
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of the mechanical power generated to enable forward progression. In able-bodied 

individuals, rapid plantarflexion of ~20° unloads the ipsilateral limb and transfers the 

load to the contralateral limb (Brockett & Chapman, 2016). The prosthetic ankle joint 

motion and propulsive capacity is dependent on the prosthetic components, but 

typically has a reduced ROM compared to an intact ankle joint (Sanderson & Martin, 

1997). Reduced propulsion has been associated with a shorter step length which is 

consistent with that exhibited by ITTAs (Browne & Franz, 2017a). To compensate for 

reduced prosthetic ankle joint propulsion, Nolan & Lees (2000) found the intact limb 

ankle joint moved through a greater average ROM (26°) when loading the limb than 

the prosthetic limb (20°) and able-bodied individuals (21°). It was additionally found 

that the intact ankle joint motion during loading increased as the prosthetic ankle ROM 

decreased during propulsion.  

Beyond the ankle joint, additional work is completed by the prosthetic hip joint to 

compensate for reduced ankle joint propulsion. In able-bodied persons, the hip 

performs positive work during late push-off and early swing (Donelan et al., 2002a, 

Neptune et al., 2001). ITTAs are characterised with greater hip joint power in the 

prosthetic limb, compared to the intact limb and control limbs, in the attempt to 

increase step-frequency to maintain speed (Ventura et al., 2011, Silverman et al., 

2008). This also tends to shorten the step length of the intact limb which is indicative 

of the asymmetrical walking gait seen in ITTAs, possibly leading to increased and 

faster loading of the intact limb (de Cerqueira Soares et al., 2009).  

The intact limb hip joint reaches similar magnitudes of peak flexion as the prosthetic 

and able-bodied limbs (40°); however, this peak was found to occur at 8% of the gait 

cycle (loading response) in the intact limb as compared to 92% of the gait cycle 

(during swing prior to initial contact) in the other two limbs (Grumillier et al., 2008). 

The H1S work done has, therefore, been found to be greater in the intact limb 

compared to able-bodied controls during loading response to ensure the completion 



Chapter 2: Literature Review
 

18 

 

of the step-to-step transition (Grumillier et al., 2008). The intact knee joint also 

undergoes greater maximal flexion compared to a control limb during loading 

response (24° and 19°, respectively; Bayaert et al., 2008, Sanderson & Martin, 1997). 

As such, increased work is done during the K1S absorption power burst phase 

compared to able-bodied individuals (Beyaert et al., 2008). Both the intact knee and 

hip joints have increased internal extensor moments compared to controls to control 

the increased joint flexion and prevent buckling (Nolan & Lees, 2000, Beyaert et al., 

2008, Grumillier et al., 2008). The mechanics at the intact knee and hip joints are 

possible compensatory movement patterns to enable progression in response to the 

altered prosthetic limb motion. 

Compensatory strategies undertaken by ITTAs have been examined extensively in 

walking gait and can provide indications of altered mechanics that are likely to be 

adopted in other cyclical movement patterns (e.g. step descent). Movement 

strategies in both the intact and prosthetic limbs may play a role in the magnitude and 

rate of intact whole-limb and joint loading based on the impulse-momentum theorem 

and dynamic walking theory.  

2.3. Joint Coordination 

Biomechanical analysis of human movement typically assesses individual joint 

motion. However, analysis of individual joint motion is unable to fully encompass the 

dynamic nature of movement as only inferences can be made regarding the influence 

of one limb or joint on another. Coordination between joints can provide a measure 

of the self-organisation utilised for the production of movement patterns. Coordination 

is defined as the ability of the system to functionally control a series of joints or 

segments in time and in sequence to produce a functional movement pattern (Byrne 

et al., 2002). Essential to this definition, is that failure of one of the joints in the series 

can be compensated for at another joint to complete the movement task (Bernstein, 

1967). The inability or inconsistency in the development of self-organised 
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coordination patterns may result in pathological gait, such as that seen in amputees. 

For example, ITTAs, in the prosthetic limb, utilise the hip joint to provide ‘pull-off’ 

power in compensation for reduced ‘push-off’ power from the ankle joint. Under this 

assumption, it is therefore plausible to state that amputees, from the loss of the ankle 

joint, produce a different coordination pattern that elicits the same movement outcome 

(e.g. forward progression) as able-bodied individuals. It is possible that the 

coordination patterns adopted may provide additional information on the relationship 

between movement patterns and limb and joint loading than that which can be 

depicted by individual joint motion alone. 

Limited, if any, coordination research has been conducted in the ITTA population, yet 

can provide valuable insight into the strategies utilised to achieve a task goal. Elderly 

individuals tend to exhibit similar gait characteristics as ITTAs (e.g. slower walking 

speeds, smaller step lengths, balance recovery issues following perturbations). Chiu 

& Chou (2012) found that as walking speeds increased, elderly individuals did not 

adapt their knee-hip coordination strategies. In contrast, younger individuals modified 

their coordination patterns with increases in walking speed to complete the task and 

ensure stability when walking. It is possible that ITTAs, similar to elderly populations, 

may not be able to adapt their coordination strategies when performing more 

demanding movement tasks. Patients who have undergone anterior cruciate ligament 

reconstructive surgery tend to perform compensatory strategies that are associated 

with risk factors for joint degeneration. Segment coordination in anterior cruciate 

ligament reconstructive patients have been found to differ significantly compared to a 

matched control group (Nematollahi et al., 2016). This was despite no significant 

differences in the individual joint motion. This suggests that it is the way in which joints 

coordinate to produce functional movement patterns that may be related to injury 

(Hughes & Watkins, 2008, Doherty et al., 2014). No research has investigated the 

role of joint coordination in relation with limb and joint loading in the ITTA population. 
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2.4. Step Descent 

It has been postulated in this thesis that overloading of the intact limb, if it exists as a 

mechanism in the development of joint degeneration in this population, could be 

present in tasks other than level-walking. A step descent, similar to stepping off a 

kerb, is an important functional task regularly performed in daily living. Step descent 

is a functionally demanding extension of level-walking gait that requires increased 

joint motion and mechanical work to attenuate higher loads relative to level-walking 

gait (Jones et al., 2006, van Dieën et al., 2007, Barnett et al., 2014, van Dieën et al., 

2008, Christina & Cavanagh, 2002, Novak & Brouwer, 2011). Limited research has 

assessed loading patterns during a step descent and the movement strategies 

performed by established ITTAs is currently unknown. 

To perform a step descent, the leading limb must absorb the kinetic energy generated 

from the vertical displacement of the CoM and aid in transferring the weight from the 

trailing limb (Figure 2.1). The trailing limb must safely control the lowering of the CoM 

through increased eccentric control of the quadriceps and plantarflexors compared to 

level-walking gait and subsequently propel the CoM to continue forward progression.  

 

 

Figure 2.1. Definition of lead and trail limbs during a step descent with force 
platform placements noted 
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The phases of a step descent have not been clearly established in the literature. Step 

and stair descent require similar mechanics to accomplish the task, thus, phases of 

stair descent can be used to help inform the phases of a step descent. Stair descent 

literature has identified three distinct phases during stance: 1) weight acceptance (i.e., 

absorption of load during double support), 2) forward progression during the first half 

of single support, and 3) controlled lowering during the second half of single support 

and continuing throughout the entire double support phase as the contralateral limb 

undergoes phase 1 (Zachazewski et al., 1993, Buckley et al., 2013). Both stair and 

step descent tasks require the leading limb to absorb the load from the descending 

CoM and is similarly defined as the loading response phase (Stair: Spanjaard et al., 

2009, Zachazewski et al., 1993, Buckley et al., 2013, Schmalz et al., 2007; Step: van 

Dieën et al., 2008, van Dieën et al., 2007, Jones et al., 2006). Unlike stair descent, a 

single step descent requires the ability to transition to level-walking gait and continue 

forward progression immediately. The majority of the propulsion required during step 

descent occurs in the trailing limb during the period of double support while the 

leading limb concurrently absorbs load. This differs from stair descent when forward 

progression occurs in single support. Limited research has examined the trailing limb 

during a step descent and, as such, the trailing limb sub-phases of a single step 

negotiation have not been adequately defined.  

Of the few step descent studies investigating the mechanics of the trailing limb, 

analysis consisted of the entire trail limb stance phase (van Dieën et al., 2007), the 

single support phase of the trail limb to assess the lowering of the CoM (Selfe et al., 

2008), and the propulsive phase defined as the double support phase (van Dieën et 

al., 2008). When analysing the entire trailing limb stance phase, van Dieën et al. 

(2007) did not define specific trail limb sub-phases. However, discussion of the results 

in the study separated the trailing limb mechanics between those that were utilised to 

lower the CoM during single support and those required to propel the CoM forward 
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during double support. The inclusion of analysing the mechanics during single support 

is necessary as between-limb influences could occur outside of the double-support 

phase as depicted by the step-to-step transition. Differences could occur when 

lowering the CoM as controlled eccentric contractions from the trailing limb are 

necessary to resist the effect of gravity and prevent collapse of the knee joint. A 

reduction in the joint flexion to lower the CoM could result in less work done by the 

trailing limb. As a consequence, the forward and vertical momentum not controlled by 

the trailing limb could potentially lead to higher load in the leading limb as a greater 

impulse must be generated to lower the CoM and continue forward progression 

(Donelan et al., 2002a). No research has examined these sub-phases in ITTAs where 

compensations due to the loss of the ankle joint could result in a combination of these 

two sub-phases (i.e. no distinct sub-phases).  

There are two descent strategies that have been identified by previous research 

based on the contact area of the foot (Freedman & Kent, 1987). Initial contact of the 

leading limb is made with either the heel or toe. The effect of descent strategy on the 

development of load is not well understood. van Dieën et al. (2008) examined peak 

vGRF and found that utilising a toe contact (TC) strategy resulted in significantly 

reduced peak magnitude compared to a heel contact strategy. However, this study 

and other step and stair descent studies attribute the preference for a TC strategy to 

aid in whole-body stability rather than to reduce the load experienced (van Dieën et 

al., 2008, Spanjaard et al., 2009, Jones et al., 2006). In elderly individuals, it is well 

established that muscular strength is lost first in the ankle musculature (Kerrigan et 

al., 1998, Judge et al., 1996). A TC strategy, compared to a heel contact (HC) 

strategy, is mechanically more demanding at the ankle joint as it requires greater work 

and absorption power (Gerstle et al., 2018). It is, therefore, unexpected that elderly 

individuals would prefer to utilise a TC strategy independent of step height and 

walking speed (van Dieën & Pijnappels, 2009). This would suggest that the 
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preference of a TC strategy in elderly individuals may be to minimise forces in the 

limb. As high load is thought to be associated with joint degeneration, it is important 

to understand the effect of the descent strategy on the development of load. 

Previous research has indicated that the choice of descent strategy can be influenced 

by a number of factors including step height (van Dieën & Pijnappels, 2009, Gerstle 

et al., 2017), stepping speed (van Dieën et al., 2008, Gerstle et al., 2017), age (van 

Dieën & Pijnappels, 2009), and stability (van Dieën & Pijnappels, 2009, Gerstle et al., 

2018). A TC strategy is more commonly performed at higher step heights (van Dieën 

& Pijnappels, 2009, Gerstle et al., 2017). The lengthened leading limb can aid in 

reducing the vertical velocity at initial contact as the CoM is higher. The ankle joint 

can also be utilised to absorb the greater velocity from the higher step height through 

increased eccentric activation from the ankle plantarflexors. As step height increases 

from 5 to 10 cm, the probability of a heel strike to occur in young able-bodied 

individuals decreases by ~43-63% dependent on the walking speed (van Dieën & 

Pijnappels, 2009). Again, when increasing the step height from 10 to 15 cm, heel 

strike preference decreases by ~7-26%. These decreases were smaller in elderly 

individuals (72.5 ± 5 years) who prefer to perform a TC strategy more often than 

young individuals (23 ± 1 years) independent of step height or stepping speed. van 

Dieën et al. (2008) also suggested, based on pilot work, that 10 cm was the height at 

which the descent strategy begins to alternate between toe and heel contact. Gerstle 

et al. (2017) found that at 5 and 15 cm step heights the descent preference was a HC 

strategy (95% and 59%, respectively). At 25 cm, however, the preference transitioned 

to a TC strategy (77%). These studies suggest that between 10 and 20 cm is the 

height about which descent strategy preference is unclear. Descending from a step 

within this range may help to indicate other factors that could influence descent 

preference, such as reducing impact forces.  
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At a step height of 15 cm, the influence of stepping speed on the choice of the descent 

strategy performed is unclear. van Dieën et al. (2008) found that speed was reduced 

when utilising a TC strategy compared to a HC strategy despite controlling for overall 

walking speed. In another study, van Dieën & Pijnappels (2009) asked able-bodied 

participants to walk at various controlled walking speeds. It was found that the 

preference for a TC strategy reduced as speed increased in both young and elderly 

populations. However, this is in contrast to Gerstle et al. (2017) who found that 

participants that performed a TC strategy actually maintained faster walking speeds. 

The differences across studies possible occurred as van Dieën and colleagues (2008, 

2009) controlled walking speed, while Gerstle et al. (2017) allowed participants to 

walk at their self-selected pace. In a study assessing the descent preferences of 

ITTAs within 6-months post-amputation, speed was independent of the descent 

strategy chosen. As these ITTAs had not established their joint mechanics, the 

descent strategy changed between HC and TC strategies when leading with the intact 

limb at each visit to lab (1-, 3-, and 6-months), while walking speed plateaued at the 

3- and 6-month visits (0.96 and 0.98 m/s, respectively). This may suggest that walking 

at preferred speeds may provide greater insight into the natural mechanics performed 

and/or that stepping speed is independent of the chosen descent strategy.  

The role of the trailing limb in relation to the descent strategy has not been fully 

explored. It is plausible that descent strategy preferences could be due to inhibition 

from the trailing limb to accommodate for the increased demand of the task. The 

trailing limb may be unable to produce the ROM or eccentrically control the vertical 

displacement of the CoM to necessitate changes in step height or walking speeds. 

van Dieën et al. (2008) is the only study to examine the trailing limb mechanics (peak 

power and work done at each lower-limb joint) in both HC and TC strategies. No 

significant differences were found between strategies (p > 0.244). The study, 

however, only assessed the propulsive phase and controlled for walking speed 
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suggesting similar propulsion was required to continue forward progression. 

Additionally, participants were instructed to perform both descent strategies. Insight 

into the effects of the trailing limb mechanics on the descent strategy (and subsequent 

development of lead limb loading) could be informed by examining step descent 

strategies from a step height about which strategy preferences are unclear (10-20 

cm) and when performed at habitual walking speeds. 

While numerous studies have examined the movement strategies adopted by ITTAs 

during level-walking gait, there is a paucity of research in higher demanding tasks 

such as step descent. One study in ITTAs assessed the mechanics when leading with 

the intact limb (Barnett et al., 2014), another study examined only the mechanics of 

the prosthetic limb leading (Jones et al., 2006), and the last study in ITTAs examined 

only the trailing limb mechanics utilised to lower the CoM (Murray et al., 2017). These 

studies did not include comparisons to a control population. Thus, it is unclear how 

the joint mechanics of the intact limb may compensate compared to a ‘normal’ 

descent strategy. It is possible that ITTAs may choose to descend a step leading with 

the prosthetic limb in order to utilise the functionality of the intact limb to control the 

downward-forward momentum and provide stability (van Dieën et al., 2008, 

Spanjaard et al., 2009, Jones et al., 2006). However, Barnett et al. (2014) observed 

that a lead limb preference of the prosthetic limb was reduced from 90.8% at 1-month 

post-discharge to 52.6% at 6-months. This would suggest that there is no lead limb 

preference consistent across established ITTA individuals. This further indicates the 

importance of examining the loading patterns and underpinning joint mechanics when 

leading with the intact limb during a step descent. 

2.5. Drop Landing 

Drop landing was chosen as an experimental model to further examine the loading 

patterns and joint mechanics of the intact limb when contributions from the prosthetic 

limb and requirements of task demands (e.g. horizontal progression) are controlled. 
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It is additionally a task in which the vertical momentum is reduced by the same amount 

across all participants, thus, making comparisons equivalent. Further, the quickly 

applied forces that occur during landings have been associated with various knee 

injuries, including osteoarthritis and non-specific knee pain (Murphy et al., 2003). 

When modelling the limb as a spring, absorption of forces can be mediated by 

changes in the displacement of joints (Farley & Morgenroth, 1999). Unilateral landings 

on the intact limb of ITTAs could indicate the inherent joint mechanistic approach 

utilised in this limb to mediate forces independent of influencing factors (i.e. task 

demands and effects from the prosthetic limb). Additionally, the compensatory 

strategies performed in the intact limb of ITTAs in response to the limited capacity of 

the prosthetic limb are unknown when landing from a jump. It is unclear if 

compensations are indicative of risk factors associated with joint degeneration. Thus, 

ITTAs are encouraged to participate in sports adapted to either sitting or wheelchair 

versions to reduce repetitive high impact loading, however, this can limit the 

cardiovascular benefits of exercise (Chapman, 2008, Sanderson & Martin, 1996).  

During bilateral landing, rapid impact forces are typically dissipated by near 

synchronous joint flexion of both limbs and eccentric work of the quadriceps muscles. 

The ankle joint is the first joint where shock absorption occurs in the lower-limbs and 

is thought the be the main contributor to limb stiffness (Farley & Morgenroth, 1999). 

An optimal ankle plantarflexion angle at initial contact between 20-30° has been 

associated with reduced peak vGRF and vGRF loading rates (Rowley & Richards, 

2015). This ‘optimal’ angle was also associated with equivalent contributions to the 

total support moment from the knee and hip joints. Plantarflexion angles smaller than 

20° resulted in increased peak vGRF and vGRF loading rate and a greater reliance 

on the hip joint to attenuate load. Larger plantarflexion angles resulted in overall minor 

decreases in vGRF, however, this was not consistent across participants where 

increases in vGRFs could occur with larger than 30° plantarflexion angles at initial 
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contact. Previous research has determined that greater joint flexion from all lower-

limb joints is associated with reduced peak vertical forces as the duration of the 

absorption phase increases (DeVita & Skelly, 1992, Zhang et al., 2000, Norcross et 

al., 2010). Whereas, individuals who perform a more extended landing strategy tend 

to have higher peak forces as the greatest joint flexion ROM occurs at the ankle joint 

and less joint flexion at the knee and hip joints. Greater utilisation of the ankle joint 

power compared to the knee and hip joints, can also lead to reductions in the hip joint 

power contribution to dissipating the kinetic energy at touchdown (Zhang et al., 2000, 

Norcross et al., 2013, DeVita & Skelly, 1992). Thus, a more extended landing strategy 

could place these individuals at a greater risk of injury. Taken together, these studies 

suggest that in-phase flexion coordination of the lower-limb joints may be an important 

factor in mediating forces upon landing (Aerts et al., 2013).  

ITTAs have limited ROM at the prosthetic ankle and, therefore, will compensate 

elsewhere in the kinematic chain. Only one study has previously assessed landings 

in the amputee population (Schoeman et al., 2013). A quasi-unilateral landing was 

performed by the ITTAs following a maximal vertical jump in which the intact limb 

touched down earlier than the prosthetic limb. This places a greater demand on the 

intact limb to attenuate the impact forces. Schoeman et al. (2013) found that the intact 

limb of ITTAs experienced a greater peak vGRF and performed reduced joint ROM 

compared to the matched control limbs. This would suggest that ITTAs perform a 

more extended landing strategy. However, this study examined voluntary maximal 

jump efforts in which the ITTAs achieved maximal jump heights of half that of the 

able-bodied controls (15 ± 6 cm vs 30 ± 4 cm). This makes comparisons between the 

two groups difficult as significant differences in the joint mechanics may have been 

the result of different vertical velocities at initial contact (Yeow et al., 2009a, Yeow et 

al., 2009b, Yeow et al., 2010). Between-limb influences have been demonstrated to 

occur in walking gait (Morgenroth et al., 2011), yet have not been examined in 
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discrete in-phase tasks such as drop landings. It is possible that the intact limb may 

be able to perform a more flexed landing strategy, associated with reduced risk of 

knee pain, without the possible influence from the prosthetic limb. 

The extended landing strategy that was possibly performed by the intact limb in the 

Schoeman et al. (2013) study could have been a compensatory strategy performed 

in response to reduced quadriceps strength. The intact limb of ITTAs has been found 

to have substantial deficits in maximal quadriceps strength of up to 39% compared to 

controls (Lloyd et al., 2010, Pedrinelli et al., 2002). Reduced flexion at all lower-limb 

joints could limit the eccentric work required from the quadriceps muscles (Bisseling 

et al., 2007). However, this could lead to greater load and a transfer of this load to the 

surrounding joint tissue rather than dissipating through the larger muscle groups 

(DeVita & Skelly, 1992). A possible strategy to overcome reduced quadriceps 

strength while decreasing the risk of injury is through increasing trunk flexion. Greater 

trunk flexion during landings has been associated with greater flexion at all lower-limb 

joints and reduces the reliance on the eccentric contraction of the quadriceps muscles 

to arrest the downward momentum (Blackburn & Padua, 2008, Blackburn & Padua, 

2009). 

A more extended landing strategy and decreased quadriceps muscle force can also 

alter the joint mechanics in the frontal plane (Hewett et al., 2005, Markolf et al., 1978). 

Knee valgus motion is an established feature associated with the occurrence of non-

descriptive knee pain and anterior cruciate ligament injuries (Miyazaki et al., 2002). 

Individuals who landed with increased knee valgus have also been found to exhibit 

hip adduction angles and internal rotation coupled with tibial external rotation and foot 

eversion (Kobayashi et al., 2013, Yasuda et al., 2016). This research has indicated 

that the multi-planar motion at the hip joint, rather than the ankle joint, may have a 

greater influence on knee loading (Powers, 2010, Kobayashi et al., 2013). However, 

current research has found conflicting evidence on the relationship between hip 
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strength and knee valgus motion (Chaudhari & Andriacchi, 2006, Sigward & Powers, 

2007, Geiser et al., 2010, Hughes, 2014). Additionally, studies assessing ankle and 

hip frontal plane features have only been able to explain 16-49% of the variation in 

knee valgus motion (Sigward & Powers, 2007, Sigward et al., 2008). The remaining 

variance is most likely explained by the sagittal plane joint motion (Pollard et al., 

2010), trunk flexion (Blackburn & Padua, 2008), and quadriceps strength (Kuenze et 

al., 2015, Ward et al., 2018) which will be explored in this thesis. 

The compensatory strategies performed by established ITTAs when landing from a 

jump are unclear. It is possible that deficiencies in the intact limb post-amputation 

may contribute to high load in this limb, if high load is a mechanism of joint 

degeneration in this population. Unilateral drop landings could possibly provide 

information regarding these deficiencies. Additionally, bilateral drop landings can 

indicate the effects from the prosthetic limb on the intact limb joint mechanics and 

loading patterns. Rehabilitation and exercise protocols for ITTAs could be enhanced 

by utilising unilateral and bilateral drop landings yet the occurrence of high load in the 

intact limb loading is unknown.  

This literature review has highlighted the lack of research on the loading patterns in 

lower-limb amputees and how the joints act to mediate these loads. Step descent and 

drop landing tasks are ideal to investigate the load on the intact limb of ITTAs and 

how the joint mechanics of the intact and prosthetic limbs interact in the development 

of this load. Step descent, an out-of-phase asymmetrical task, requires a step-to-step 

transition where the reduced joint motion and propulsive power of the prosthetic ankle 

joint may influence the development of lead limb loading and performance of the task. 

The discrete in-phase symmetrical drop landing task can remove the effects of the 

prosthetic limb and the requirements to continue forward progression to investigate 

deficiencies in the intact limb. Additionally, drop landing tasks could indicate if the 

effects from the prosthetic limb influence the development of load on the intact limb.  
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This literature review has also highlighted the inconclusive results from walking gait 

research in which it is unclear if high load exists in the intact limb of ITTAs as 

compared to controls. It was postulated that these results may be due to issues 

surrounding discrete point analysis.  
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Part Two: Waveform Analysis Methodology 

This section will discuss the current issues with discrete point analysis and methods 

that have been performed in previous research to solve these problems, such as 

waveform analysis.  

2.6. Discrete versus Continuous Analysis 

A potential reason for the inconclusive results when assessing intact limb overloading 

is that the commonly researched loading features are discrete points extracted from 

a continuous waveform. Discrete point analysis (DPA) reduces a waveform to a single 

time-dependent point which is assumed to capture the underlying function of the 

signal. DPA is prevalent in biomechanical literature as it is an efficient and convenient 

way to reduce and analyse the complex nature of movement; however, DPA is unable 

to encompass the dynamic mechanics of movement and has three significant 

limitations. First, the ‘key’ discrete features analysed are determined from previous 

literature and can fail to detect important information elsewhere in the waveform 

(Dona et al., 2009, Donoghue et al., 2008). This ad hoc approach can be biased as 

the discrete features are typically chosen based on unjustified positional values (e.g. 

peaks or troughs) and/or temporal windows where limited evidence has suggested 

that these features are physiologically meaningful (Pataky et al., 2014). This approach 

allows only what is expected by researchers to be detected (Schöllhorn et al., 2002). 

Second, ‘key’ features may occur at different time positions in the waveform (Richter 

et al., 2014b). For example, in bi-modal waveforms, the peak may occur at either the 

first or second maximum; DPA may, therefore, compare non-related neuromuscular 

measures. Lastly, DPA is unable to examine how features develop over a phase of 

movement. Reducing highly multivariate datasets to discrete points may result in the 

loss of valuable information (Pataky et al., 2013) as the majority of the waveform is 

not considered. Based on the number of discrete features chosen for analysis and 

assuming that each waveform consists of 101 points, one study estimated that only 
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0.5-1.4% of the data is examined within a study (Richter, 2014a). One way to 

overcome these limitations is by utilising continuous waveform analysis.  

It should be emphasised that DPA is a useful way to reduce waveform data when 

working with such large datasets as are common in the field of biomechanics. Indeed, 

it may be found that the results from waveform analysis suggest those ‘key’ discrete 

features that are often assessed are a sufficient and appropriate way to reduce 

waveform data. Waveform analysis should be utilised to reduce bias in the features 

selected, especially when previous research provides inconclusive results when 

analysing the ad hoc ‘key’ features.  

2.7. Statistical Parametric Mapping 

Statistical parametric mapping (SPM) is one type of waveform analysis that allows for 

testing of biomechanical variables in their original temporal-spatial context. It does 

this by capturing phases of covariance between multivariate datasets (Pataky, 2012). 

SPM was originally developed by Karl Friston (Friston et al., 1991) to examine three-

dimensional differences in brain activity. It has been adapted to analyse 

biomechanical waveform data by Pataky and colleagues (Pataky et al., 2013). In 

essence, it is a technique that extends zero-dimensional (discrete) statistical 

processes through time.  

Both discrete and SPM approaches utilise t-distributions (associated with t-tests) or 

F-distributions (associated with ANOVAs). The other aspect of performing a statistical 

analysis is determining the p-value threshold. This threshold (also called the alpha 

threshold) describes the behaviour of random data across infinite sets of experiments. 

It represents the likelihood of a false positive and is most commonly set at 0.05; i.e. 

one false positive will occur for every 20 times the experiment is repeated. The typical 

Bonferroni correction of the alpha threshold to account for multiplicity (multiple 

comparisons using the same data) is in most cases too conservative. With Bonferroni 

correction, the alpha threshold is most commonly set as alpha/ number of 
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comparisons. The t- and F-distribution values that are above the alpha threshold 

represent the data points that have a 95% probability of being significantly different 

over an infinite number of experiments. However, a Bonferroni correction assumes 

all data points are independent. The main difference of one-dimensional (continuous) 

analyses from DPA is the use of random field theory (RFT). RFT accounts for the 

multiple comparison problem as one-dimensional continuous data points are not 

independent because the waveform develops over time and each datum will be 

related to those before and after. RFT is similar to a Bonferroni correction, except that 

RFT controls for false positives within regions rather than for single datum. The 

threshold for RFT in SPM one-dimensional analyses is determined by using the 

classical height-threshold cluster-breadth procedure (Pataky, 2012). The 

mathematical calculations and approaches for estimating the RFT thresholds are 

described in full for all multivariate statistical tests in the Friston et al. (1994) and 

Worsley et al. (2004) papers. For the purposes of this thesis, these calculations will 

not be presented in text.  

2.8. Issues with Waveform Analysis 

One issue with waveform analysis is the inherent timing/phase variability that is 

present within and between participants. This can limit direct magnitude comparisons 

of physiological events (Chau et al., 2005, Godwin et al., 2010) where significant 

findings may not reflect the movement physiology (Sadeghi et al., 2000). The main 

approach to limit variability is to linearly time-normalise the data (Page & Epifanio, 

2007). However, timing/phase variability can still exist after time-normalisation (Buzzi 

et al., 2003). For example, Figure 2.2A depicts the time-normalised vGRF curves for 

two different participants during the take-off phase of a countermovement jump. The 

physiological event, denoted by the asterisk, represents the end of the eccentric 

phase which differs between participants even after time-normalisation. Waveform 

analysis following time-normalisation could possibly result in magnitude comparisons 
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across different phases of the movement. Therefore, results could be wrongly 

interpreted as magnitude differences rather than as a result of comparing different 

physiological phases due to timing differences between participants. 

 

An additional issue with time-normalisation is the warping of the original timing of 

events in the waveform which could be important in assessing the efficiency of a 

movement or the risk of injury. Previous research has suggested that the difference 

in the timing of events is as important as magnitude differences (Levitin et al., 2007). 

One way to examine the timing of events after time-normalisation and any other 

methods of time-warping is through the extraction of the time-domain (Figure 2.2B). 

The time-domain represents the time taken to complete the movement or phase of 

the movement and can be assessed in the same manner as the magnitude-domain.  

2.9.  Landmark Registration 

Landmark registration is one possible solution to account for timing/phase variability 

in waveforms after time-normalisation by registering the signal to meaningful events 

inherent within the movement task. Landmark registration is a technique that 

‘stretches’ or ‘shortens’ phases of a task that occur between specified landmarks (i.e. 

Figure 2.2. A) Time-normalised vGRF curves for the take-off phase of countermovement 
jumps for two subjects. The end of the eccentric phase is denoted by a red dot with solid 
vertical lines. B) The time-domain for each subject representing the time taken to complete 
the take-off phase.  
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events) while maintaining each waveform’s individual shape and amplitude (Crane et 

al., 2010, Levitin et al., 2007). Aligning to specified landmarks, such as the end of the 

eccentric phase in a countermovement jump, may allow for more valid waveform 

magnitude analyses by aligning distinct physiological events. Landmark registration 

can be applied to any waveform including the time-domain to ensure that differences 

in timing between events are maintained for subsequent analyses. The ability of 

landmark registration to reduce the inherent timing/phase variability was assessed in 

a pilot study of this thesis (Section 3.6.3.1).  

To perform landmark registration, the landmark must first be identified. A landmark is 

defined as a point that is identifiable in every waveform and is typically a maximum, 

minimum or zero crossing. The average time point at which the landmark occurs is 

calculated across all the waveforms. The time of each waveform is then warped so 

that the individual waveform landmark occurs at the average time point. To register 

each curve to the specified landmarks, a warping function is created that determines 

whether the phase between two successive landmarks should be ‘stretched’ or 

‘shortened’. The warping function contains the information about how the phases in 

a waveform are adjusted. Once the warping function is created, it is then applied to 

any waveform of interest to answer the specified research questions.  

There are different approaches in the calculation of the warping function. The warping 

function applied in this thesis was based on adjusting the differentiation of time using 

a piecewise velocity registration. Unlike time-normalisation, this registration is a non-

linear approach. Alternative approaches to creating a warping function include 

piecewise linear and spline registrations (Ramsay, 2006, Page et al., 2006); however, 

these approaches can result in sharp corners at the landmarks and “backward 

flowing” time, respectively (Figure 2.3, adapted from Moudy et al., 2018). The 

piecewise velocity approach utilised in this thesis allows for alterations of the 

differentiation of time within set phases between landmarks.  
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There are two main factors that could influence waveform analysis after landmark 

registration: the landmarks (i.e. key events) themselves and the number of landmarks 

chosen. However, there has been no research to date to examine these key issues. 

A pilot study of this thesis was performed to investigate different landmark positions 

and the optimal number of landmarks to avoid over-registration of the signal (Section 

3.6.3.1)  

2.10.  Other Approaches to Waveform Analysis 

In addition to SPM, principal component analysis (PCA) and analysis of characterising 

phases (ACP) are approaches that have been used in previous research to examine 

waveform data. PCA is a dimensionality reduction technique where large data sets 

can be reduced to few dominant dimensions (Wold et al., 1987). This approach works 

under the assumption that large data sets have correlated features and, therefore, 

redundant information is present. A linear transformation is performed on the data to 

Figure 2.3. An illustration of three registration approaches performed on the time-domain of 
the take-off phase in a countermovement jump. These approaches include piecewise linear 
(red), piecewise spline (blue), and piecewise velocity (green) (Moudy et al., 2018, pg. 111).  
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create a set of uncorrelated principal components that contain the greatest amount of 

variation. The first principal component explains the greatest amount of variation with 

each subsequent principal component explaining less than the previous. The features 

that make up the principal components are also rated by importance by the amount 

of variance explained. This approach is able to identify which features could be the 

most important for task completion, injury assessment, or group identification (Deluzio 

et al., 1997, Mantovani et al., 2011, Deluzio & Astephen, 2007). Functional PCA is 

the specific branch of PCA that analyses waveforms rather than specific discrete time 

points within the waveform. There are limited differences between PCA and functional 

PCA other than that principal components of functional PCA describe the ‘typical’ 

shape of the input waveforms (Epifanio et al., 2008). Functional PCA identifies the 

greatest phases of variation and the features which can explain the variance of these 

phases. Warmenhoven et al. (2018) examined the results of functional data analysis 

and SPM t-tests and found that both approaches identified similar phases of 

significant difference. While functional PCA for waveform analysis has grown in 

popularity over the recent years, PCA is an exploratory approach to data analysis to 

assess large datasets when a clear hypothesis is not possible. This is the opposite 

approach to that of SPM which is used to analyse specific hypotheses. It was also 

suggested by Warmenhoven et al. (2018) that SPM would be more suitable for 

waveform analysis on specific regions of interest (i.e. step-to-step transition). 

ACP is not a statistical approach to analysing waveform data, but rather a method 

that reduces waveform data to discrete points (Richter et al., 2014c). This approach 

was developed in the attempt to deal with the issues surrounding DPA (Section 2.6. 

). ACP first utilises PCA to identify phases of variation within a single waveform. 

Within the phase of variation identified by PCA, the average magnitude value is 

calculated to provide a discrete point for further analysis. This approach removes the 

issues surrounding waveform analysis and allows the waveform data to provide the 
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‘key’ discrete points of interest. ACP has been demonstrated to be more effective in 

identifying performance related features compared to DPA (99% vs 21%, 

respectively) (Richter et al., 2014c).  However, the main problem with this approach 

is the manner in which the waveform phase of interest is reduced. It is possible that 

differences between groups that are detected through PCA may no longer be 

significantly different when reduced to this average discrete point. For example, when 

the magnitude of a feature increases or decreases quickly, such as loading rates or 

dynamic joint movement, the average value of the magnitude may not appropriately 

reflect the waveform data. Therefore, SPM was utilised in this thesis to perform 

waveform analysis based on a hypothesis-driven approach. 

2.11.  Summary and Thesis Aims 

It is thought that greater than normal loading is a determinant of the onset and 

progression of joint degeneration. The intact limb of ITTAs is at a greater risk of 

developing knee joint degenerative diseases, yet the current literature is unclear if 

high load, as a mechanism of the disease, occurs in the intact limb compared to able-

bodied controls. It is possible that these inconclusive results could be, in part, that: 1) 

commonly research loading features are discrete in nature, 2) overloading may 

possibly occur in other non-established loading features (e.g. KFM), and 3) 

overloading may occur in tasks outside of level-walking gait that have greater load 

and joint movement demands. Identification of the phases in which overloading 

occurs and those strategies that may be utilised to reduce load are important in 

decreasing the risk of developing degenerative diseases in the amputee population. 

Before implementation of intervention strategies, the influential and key mechanics 

on the development of load must be understood. 

There are two distinct step descent strategies that have been demonstrated in the 

literature: an initial toe contact or an initial heel contact of the leading limb. The extent 

to which these descent strategies may influence the development of load in the 
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leading limb has not been examined. Thus, the first main aim of this thesis was to 

1) examine the limb and joint loading patterns in the leading limb and 2) 

determine any differences in the joint mechanics of the leading and trailing 

limbs when able-bodied controls performed a step descent (Chapter 4). The 

descent strategy and compensatory joint mechanics utilised by established ITTAs 

when leading with the intact limb is unclear. Therefore, the second main aim of this 

thesis was to examine the loading patterns in the intact leading limb and joint 

mechanics utilised in both limbs to perform a step descent compared to able-

bodied controls (Chapter 5). To provide clinical application for rehabilitation 

protocols and gait modification strategies, the third main aim of this thesis was to 

identify key movement features in both the leading and trailing limbs that were 

associated with high load during a step descent (Chapter 6). 

Dynamic walking theory models have provided evidence that between-limb influences 

are present in walking gait. Reduced propulsion from the trailing limb can 

consequently increase the magnitude and rate of load experienced on the leading 

limb. It is currently unknown if the intact limb, post-amputation, is able to attenuate 

load independent of any between-limb influences from the prosthetic limb and/or the 

requirement to continue forward progression. This could provide indications of 

deficiencies in the intact limb which may be useful for informing rehabilitation 

protocols. The fourth main aim of this thesis was, therefore, to assess the shock 

absorption mechanics of the intact limb when attenuating load independent of 

the effects from the prosthetic limb or task demands by examining a unilateral 

drop landing (Chapter 7).  

ITTAs are encouraged to participate in sport and exercise yet are discouraged from 

participating in sports involving jumping. It is possible that influences from the 

prosthetic limb on the intact limb’s absorption mechanics may be present when 

performing a bilateral landing. This could place ITTAs at a greater risk of joint 
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degeneration. However, there is limited evidence to suggest that a greater than 

normal load is experienced in the intact limb of ITTAs compared to able-bodied 

controls when landing from a jump. Additionally, it is unknown if between-limb 

influences occur during discrete in-phase tasks such as jump landings. Thus, the fifth 

and final aim of this thesis, was to examine the load experienced in the intact 

limb during a bilateral drop landing to provide a greater understanding of the 

influence from the altered mechanics of prosthetic limb on the absorption 

mechanics of the intact limb (Chapter 8).  
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Chapter 3.  

Methods 

 

This chapter presents the methods completed in preparation for data collection, the 

data collection protocol, and the data processing and analysis conducted for step 

descent and drop landing tasks.  

3.1. Ethical Approval and Participant Recruitment 

The research for this project was submitted for ethics consideration under the 

reference LSC 16/ 176 in the Department of Life Sciences and was approved under 

the procedures of the University of Roehampton’s Ethics Committee on 11/07/16 

(Appendix A1). Recruitment for two groups of participants (one for individuals with a 

transtibial amputation (ITTA) and the second for able-bodied individuals) was 

completed through posters and word-of-mouth. Additionally, amputees were 

approached at multiple amputee charities and through prosthetic companies 

including, but not limited to, LimbPower, Blatchford Prosthetics, Douglas Bader 

Foundation, Help for Heroes, BLESMA, and the Tennis Foundation. Due to limited 

response from ITTA participants, an ethical application was submitted and approved 

by the National Health Services (NHS) Health Research Authority under the reference 

number 17/NW/0566 (Appendix A2). Two NHS limb-fitting centres agreed to facilitate 

recruitment through identification of potential ITTA participants. Each NHS site was 

provided with flyers and posters to distribute and display. Additionally, the sites were 

provided a ‘consent to contact’ form (Appendix A3) for those potential participants 

that wanted to receive additional information regarding the project.  
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All potential participants were provided an information sheet (Appendix A4) informing 

them of the purpose of the study, the protocol to be used including any risk involved, 

and their right to withdraw from all or parts of the study at any time without needing 

to provide a reason. Participants provided written informed consent (Appendix A5 & 

A6) upon their first visit to the biomechanics laboratory at the University of 

Roehampton. Participants were compensated £10 in cash per session (£30 in total) 

for their time and effort (Appendix A7). Amputee participants were provided up to an 

additional £20 per session to cover travel expenses upon providing a ticket receipt or 

details of distance driven (reimbursed at £0.45/mile; Appendix A8).  

3.2. Participant Populations 

Inclusion criteria required all participants to be between the ages of 20-50 years and 

partaking in moderate physical activity a minimum of 2-3 days per week. Moderate 

physical activity was defined by the international physical activity questionnaire as 

any activity that makes you breathe somewhat harder than normal. Amputee inclusion 

criteria for this study were individuals with a unilateral transtibial amputation where 

amputations were as a result of traumatic incidence (e.g., auto accident). Additionally, 

ITTA participants included in the study had a grading of K3/K4 which denotes that an 

amputee “has the ability or potential for ambulation with variable cadence and to 

negotiate environmental barriers outside the home” and “has the ability or potential 

for prosthetic ambulation that exceeds basic ambulation skills, exhibiting high impact, 

stress, or energy levels” (Orendurff et al., 2016). This K-level was deemed necessary 

to ensure those ITTAs participating in the study would be able to safely perform high 

impact tasks such as drop landing. Participants were excluded if they had sustained 

a musculoskeletal injury in the six months prior to participation in the research study. 

Amputee participants had to be at least six months’ post-amputation and were 

excluded if they experienced any pain or discomfort in the residual limb whilst using 

their prosthesis that affected their mobility.  
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There were no gender exclusion criteria, however, all ITTA participants who 

volunteered were male, therefore, in order to match the two groups, only males were 

recruited to the able-bodied cohort. Recruitment provided eight ITTAs to participate 

in the research study. Table 3.1 presents the amputee physical characteristics and 

prosthetic components. All ITTA participants wore dynamic elastic response type 

prosthetics during testing. Additionally, a total of twenty-two able-bodied controls 

completed the study. No significant differences in age, height, or mass were found 

between the ITTA and control groups.  

3.3. Equipment 

3.3.1. Step Platform 

Prior to data collection, a custom raised-surface walkway was constructed (Figure 

3.1). Five square wooden boxes (100 cm width x 100 cm length) were constructed to 

create a 5 m long walkway. Previous research found that a 5 m walkway would allow 

enough space for participants to reach habitual walking speeds prior to any change 

in mechanics being made to perform a step descent (Barnett et al., 2014, Begg & 

Sparrow, 2000). The 100 cm width of the platform was chosen as the average width 

used in both step (Begg & Sparrow, 2000, Barnett et al., 2014, Delbaere et al., 2009) 

and stair negotiation studies (Buckley et al., 2013, Reeves et al., 2008, Mian et al., 

2007). Lastly, the platform was constructed with a step height of 14 cm representing 

standard kerb height (Department of Transport, 2005).  

The step platform was placed in the middle of a 10 m walkway with force platform 

(FP) placement as depicted in Figure 3.1. The step platform was constructed to allow 

for force data to be collected from both the trailing limb on the step platform and the 

leading limb on the ground in front of the step platform. To ensure clean force data 

with no interference from the step platform, the final wooden box (labelled Box A and 

B in Figure 3.1B) situated over the first FP (FP1) was constructed in two pieces 

(Lythgo et al., 2007). A separate wooden box (Box A) the same size as the FP (40 
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cm width x 60 cm length) was built to fit directly over FP1. This separate structure 

was built to be screwed into FP1 to ensure that no movement of the step platform 

occurred relative to the FP as participants stepped on the structure. Box B was then 

placed around the separate structure leaving a gap of 1 cm to ensure no interference 

in the capture of force data. The second and third FP (FP2 and FP3) were placed 

directly after FP1 to accommodate for differing step lengths between the ITTA and 

able-bodied populations. 

 

To determine the accuracy of step platform force data, static vertical ground reaction 

force (vGRF) data were collected for three different increasing masses (~20, ~30, and 

~40 kg) and compared to the FP1 force output without the step platform. Results from 

the static validation test are included in Appendix B1. The mean absolute error 

between the force output and the actual mass was similar with and without the step 

platform (step: 2.45 - 2.81N, no step: 2.26 - 3.21N; Table B1.1). The average 

difference in force (Table B1.2) between FP1 and FP1 with the step platform attached 

for ~20 kg mass was -4.50N, ~30 kg mass was -5.37N, and ~40 kg mass was -5.84N. 

Previous research has suggested that greater than 5N difference between FPs can 

Figure 3.1. Dimensions of the step platform as seen from a A) side-view and B) top-view. 
Force platform (FP) positions relative to the end of the step platform are also depicted. The 
platform situated above FP1 was an independent structure from the rest of the platform. 
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result in cumulative error in higher-order calculations (Rist et al., 2014, Wong et al., 

2010). To address this, dynamic walking peak forces and impulses in the vertical and 

anterior-posterior directions during the braking phase of level-walking and peak knee 

external adduction moment data were captured from three participants as they walked 

across FP1 with and without the step platform. Results from dependent t-tests found 

no differences between conditions for any of the discrete dynamic walking features 

(Table B1.3). Both static and dynamic results found the constructed step platform 

provided accurate and reliable force data. 

3.3.2. Drop Landing Frame 

Traditionally, drop landing is performed by rolling off a box from a standardised height 

and landing in front of the box (Pappas et al., 2007a, Orishimo et al., 2009, Yeow, 

Lee et al., 2009a, Jones et al., 2014). There are three limitations associated with this 

technique: 1) participants can jump slightly raising the centre of mass which will 

change the vertical velocity at touchdown, 2) a horizontal velocity is introduced as 

participants are required to land in front of the box, and 3) ITTAs may find rolling off 

the edge of a box to be a difficult task to perform due to the constraints from the 

prosthesis. To address these issues, a metal drop landing frame was constructed. 

This frame allows for vertical adjustment of a hanging bar to ensure all participants 

drop the same distance to the ground (Figure 3.2). The hanging bar can be adjusted 

to the nearest centimetre by using a clamp to tighten the adjustment leg in place. As 

a safety feature, holes are positioned every 5 cm where a plunger bolt can hold the 

frame in place without the clamps. During data collection, the plunger was prepared 

to catch the frame in case the adjustment leg slipped allowing a maximum drop of up 

to 4 cm. To collect force data from both limbs individually, the width of the frame was 

built to encompass two FPs. Additionally, to ensure no interference of the drop landing 

frame with the force data, the leg stands were built 60 cm in depth to encompass 

either side of the FPs.  
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3.3.3. Hardware 

3.3.3.1. Vicon Motion Systems 

Kinematic data were collected using twelve Vicon Vantage V5 (Vicon Motion Systems 

Ltd.; Oxford, UK) motion capture cameras positioned above the area of movement 

mounted on a non-movable metal frame. The passive optical system tracks 

retroreflective markers to capture the spatial positioning of each marker. The markers 

Figure 3.2. Drop landing frame with dimensions and safety features depicted 
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reflect light that is generated near the camera’s lens. If a minimum of two cameras 

can capture the position of a marker during the same time point, a three-dimensional 

fix of the marker within the global coordinate system (GCS) can be obtained. The 

GCS is oriented based on the origin of the laboratory and was set between FP2 and 

FP3 defining ‘z’ as vertical, and ‘x’ along the short axis of the FP and ‘y’ along its 

length which corresponds with mediolateral and anterior-posterior directions in 

walking, respectively (Figure 3.3). Kinematic data were captured at 200Hz as a higher 

data collection frequency allows for more accurate event detection during tasks that 

happen quickly (i.e., drop landing). 

 

Before the commencement of data collection, the reliability and accuracy of the Vicon 

system was assessed. Static trials were collected using a rigid frame with markers 

attached at known distances from each other for ~10s (Figure B2.1). The average, 

standard deviation, and standard error of the mean (SEM) for the distance between 

markers in each direction were calculated across 5 trials. The maximum standard 

Figure 3.3. Origin of the global coordinate system as set by the Vicon Active 
Wand where positive values in each plane of motion are denoted by the direction 
of the red arrows 
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deviation was 0.1 mm and maximum SEM was 0.9 mm (Table B2.1). System 

accuracy results are presented in full in Appendix B2. 

The Vicon Nexus 2.6.1. system interface allows the integration of external devices 

such as the Kistler FPs (Type 9281c; Kistler Instruments Ltd., Hampshire, UK) in 

order to temporally align kinematic and kinetic data. System calibration, data 

collection and data processing were completed using this software. 

3.3.3.2. Kistler Force Platforms 

Three Kistler FPs were used to collect force data at a sampling frequency of 1000 Hz 

and aligned sequentially to best capture all movement phases of interest. Kistler FP 

use four built-in piezoelectric force sensors located in the corners of each platform to 

measure applied force. Each force sensor has three compartments holding quartz 

crystals to collect force data in all three planes of motion. As mechanical force is 

applied to the crystal, the force is transformed into electrical charge. This charge is 

transferred as analogue data where it is converted to digital data through an analogue 

to digital convertor.  

Vicon Motion Capture Systems recently added the ability to collect cross-platform 

strikes, i.e. where a single foot crosses two FPs in a single stance phase. The forces 

are summed across both FPs, while moments are combined by referring the 

secondary platform moment back to the origin of the primary plate (Vicon Nexus 2.5 

Documentation). This feature limits the amount of time and effort on the participants 

and researchers to obtain successful trials. However, there are limited studies on the 

validity of cross-platform strikes (Exell et al., 2012). To determine the validity of cross-

platform strikes, comparisons of force output and joint moments in both static and 

dynamic conditions were performed between strike conditions (Appendix B3). Static 

trials found standard deviation of the signal ranged from 1.54 – 2.44N and a mean 

absolute error from 1.56N – 4.69N (both maximums occurring in the cross-platform 

condition; Table B3.1). Dynamic walking trials were completed for one participant 



Chapter 3: Methods
 

50 

 

performing three trials for each FP condition (full-platform: FP1, FP2, FP3 and cross-

platform: FP1 & 2 and FP2 & 3). Statistical parametric mapping one-way ANOVAs 

were performed for vGRF, anterior-posterior GRF, and KAM waveforms (Figure 

B3.1). Results found no significant differences between full- and cross-platform 

strikes. Cross-platform foot strikes were still counted as invalid if both feet were in 

contact with the same FP at the same time. 

3.4. Data Collection Protocol 

The overall project was run in conjunction with another PhD student which involved 

three data collection sessions in total. The first two sessions undertaken by all 

participants involved muscle function testing in which participants visited the 

laboratory for two-three hours on two separate occasions that were 3-7 days apart. 

The first session was to familiarise the participants with the strength testing 

procedures. Familiarisation of the strength testing procedures is necessary to 

improve reliability of the strength data and remove the effects of learning (Maffiuletti 

et al., 2016). The second session collected the data for the strength measures. 

Strength data collection methods related to this thesis are presented in Chapter 7 

Section 7.2.1. The procedure outlined below was the third session when data for the 

experimental chapters included in the thesis were captured. This methods chapter 

will only discuss the procedures for the collection of step descent and drop landing 

data, however, it should be noted that participants were also asked to complete 

walking, running, and countermovement jump tasks. The biomechanical testing 

procedure was performed in the following order: step descent/ascent, habitual and 

fast walking, jogging, running, bilateral and unilateral countermovement jumps, and 

bilateral and unilateral drop landings. Participants were provided rest between each 

change in task/task demand to ensure limited to no effects of fatigue on subsequent 

activities. 

Participants were instructed to bring/wear shorts no longer than mid-thigh. For those 
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shorts that were too long and occluded marker detection, the shorts were taped up. 

To ensure no occlusion of upper body markers, participants did not wear a shirt 

throughout data collection. 

3.4.1. System Calibration 

Prior to the arrival of the participant, the Vicon cameras were turned on for a minimum 

of 20 minutes before system calibration was completed. First, a dynamic calibration 

was performed using the Vicon Active Wand. The Vicon Active Wand contains five 

light-emitting diodes (LED) to calibrate the relative position of each camera according 

to the other cameras. The wand was moved through the anticipated data capture 

volume producing a ‘cloud’ of markers. When a minimum of two cameras detected an 

LED, the 3D position of the LED was reconstructed, and the location of the cameras 

position relative to the other was determined. Dynamic calibration was deemed 

successful when the image error rates were ≤ 1.5 mm indicating a good accuracy of 

the 3D spatial reconstruction of the LEDs. Following dynamic calibration, the Vicon 

Active Wand was used for the static calibration to set the cameras relative to the GCS.  

FPs were calibrated in an unloaded state by setting the zero level. When the step 

descent platform was attached, FP1 was re-zeroed. FPs were considered functioning 

correctly when the Newton difference between all FPs was ≤ 5N. The FPs were re-

calibrated between each change of task conditions to ensure accuracy of the data 

collected. Force data were collected at 1000Hz to accurately capture the movement 

of faster tasks such as drop landings. 

3.4.2. Anthropometric Measures 

Body mass and height were taken first. A second height measure was taken with 

arms stretched reaching to the ceiling with the feet flat on the ground. This 

measurement was used to prepare the drop landing frame for later in the session. 

The following measures were taken bilaterally using a sliding calliper: 
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Ankle Width: distance between the medial and lateral malleolus of the tibia 

and fibula, respectively 

Knee Width: distance between the medial and lateral epicondyle of the 

femur 

Leg Length: distance from the most prominent portion of the anterior 

superior iliac spine to the medial malleolus of the tibia 

Elbow Width: distance between the medial and lateral epicondyle of the 

humerus 

Wrist Width: distance between the radial and ulnar styloid processes 

Hand Thickness: distance between the dorsal and palmar surfaces of the hand 

taken at the point of flexion of the second metacarpal joint 

Shoulder Offset: vertical distance from the acromion clavicular joint to the 

centre of the glenohumeral joint 

This sequence of measurements was performed twice. If the difference between the 

two values for a given measure was greater than 2 mm, a third measurement was 

taken. An average of two measurements that were within 2 mm of each other was 

used as the input to the Plug-In Gait model in Vicon Nexus 2.6.1. 

3.4.3. Marker Placement and Participant Calibration 

Forty-three retroreflective markers (diameter: 14 mm) in total were attached directly 

to the skin using double-sided tape. Thirty-nine of these markers were placed in 

accordance with the full-body marker set outlined by Davis et al. (1991) (Figure 3.4). 

Four markers were placed bilaterally on the anterior aspects of the thigh and tibia to 

allow for the Symmetrical Axis of Rotation Approach (SARA) and Symmetrical Centre 
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of Rotation Estimation (SCoRE) model calibration. The prosthetic limb markers were 

placed on corresponding positions as the intact limb (Rusaw, D. & Ramstrand, 2011, 

Rusaw, David & Ramstrand, 2010, Kent & Franklyn-Miller, 2011). 

 

Following marker placement, participant calibration (i.e. static trial) was performed to 

obtain participant specific reference locations for the markers to be used in data 

processing. Participants were asked to stand with their feet shoulder width apart, 

knees slightly bent, arms parallel with the floor, and elbows bent at a 90° angle. They 

were asked to hold this position looking straight ahead for 2 seconds. The static trial 

was then checked to ensure all markers were present and were clearly seen by the 

cameras. 

Figure 3.4. Marker placement as outlined by Davis et al. (1991) 
depicted by red dots and the extra SARA and SCoRE depicted by 
yellow dots. 
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3.4.3.1. Validation Test 

An essential prerequisite to reliable determination of kinetic and kinematic data is the 

accurate assessment of skeletal joint centres. Biomechanical modelling software 

uses real marker trajectories and generates ‘virtual’ marker trajectories to represent 

joint centres. The Vicon Nexus model (Plug-in Gait, PiG) uses the Newington-Gage 

model to determine the hip joint centres (HJC) based on marker trajectories and 

anthropometric measures. The knee and ankle joint centres are calculated using a 

modified chord function. 

Accurate calculations of joint centres highly depend on both reliable marker 

placement and anthropometric measures (Sinclair et al., 2012, Tsushima et al., 2003). 

To minimise this error prior to the commencement of data collection, the reliability of 

marker placement was investigated (Appendix B4). A within-day test-retest design 

was used. The inter-ASIS, ASIS to knee, and knee to ankle distances on both limbs 

were extracted during a 2-second capture of a static trial. The test-retest SEM for the 

average distance between markers on both limbs ranged from 0.02 – 0.17 mm with 

the greatest error occurring between the right ASIS and the knee joint marker position 

(0.17 mm) followed by the distance between the right knee and ankle joint markers 

(0.14 mm; Table B4.1). Results suggest that detection of anatomical landmarks and 

marker placement were reliable.  

In recent years, a new modelling technique has been implemented by Vicon to 

address concerns regarding the accuracy of the knee and hip joint centre locations 

using the PiG model calculations. The optimum common shape technique (OCST) is 

a functional approach in identifying joint centres thought to provide more reliable 

kinematic outputs by reducing systematic errors, such as marker placement and skin 

movement artefacts (Taylor et al., 2010). The main purpose of SCoRE is to provide 

a more repeatable hip joint centre calculations (Ehrig et al., 2006), while SARA 

provides more repeatable knee joint centre calculations (Ehrig et al., 2007). In a study 



Chapter 3: Methods
 

55 

 

that assessed the reliability of the OCST functional technique, intra-class correlation 

results both between-days and between investigators found the OCST functional 

technique to be more reliable than the standard regression technique implemented 

by Vicon (Taylor et al., 2010). However, both techniques had intra-class correlation 

scores great than 0.88, indicating excellent reliability. The SARA and SCoRE 

functional techniques were developed for clinical laboratories to reduce the 

systematic error associated with long-term studies. Due to the similarity in reliability, 

greater processing time required for OCST modelling, and that the current study was 

performed on a single day for a single session, the functional approach was not 

utilised in the current study. 

3.4.4. Step Descent 

To acclimate to the step platform, participants first performed a warm-up by walking 

the length of the lab (25 m) and stepped up and down as they reached the platform 

on either end. Participants walked at a self-selected pace until they felt comfortable 

negotiating the step platform. Once acclimated, data were collected while participants 

walked the length of the platform, stepped-down and continued to the end of the 

laboratory (10 m). Participants walked at a self-selected habitual pace and were given 

no instructions on which limb to lead with during the step descent. The dominant limb 

for the able-bodied control participants was determined as the first limb chosen to 

lead during descent. A minimum of five trials were collected for each limb leading (i.e., 

intact, prosthetic, dominant, and non-dominant). Once five trials were collected for the 

preferred/dominant leading limb, participants were then instructed to take their first 

step with the other limb. A trial was successful if the trailing limb foot was placed fully 

on the step platform and a successful strike was performed from the leading limb 

(e.g., no double hits on a single FP). A cross-platform strike was considered a 

successful strike for the leading limb in order to capture the natural performance of 

the task without restriction. When all step descent trials were collected, participants 
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were given a five-minute break while the step platform was removed. 

3.4.5. Drop Landing 

To remove the influence of jump height on landing techniques, drop landing was 

additionally performed both bilaterally and unilaterally. The ITTA population only 

performed the unilateral drop landing on the intact limb. Amputees were unable or 

chose not to perform a unilateral drop landing on to the prosthetic limb due to either 

balance issues or worries of pain upon impact in the residual limb. The drop landing 

frame was placed around two of the FPs to gather data from both limbs individually 

during the bilateral drop landing. The hanging bar was adjusted so that the 

participants were 30 cm off the ground as measured from the heel while hanging. This 

drop height was chosen as the typical drop height across multiple studies (Pappas et 

al., 2007a, Orishimo et al., 2009, Yeow et al., 2009a, Jones et al., 2014, Durall et al., 

2011, Doherty et al., 2014, Ford et al., 2003). Following a demonstration, participants 

climbed a small step ladder (3 steps), held onto the hanging bar and slowly lowered 

themselves to a hanging position. An investigator was nearby to stabilise the 

participant once hanging. Participants were instructed to hold for one second after 

the investigator let go before dropping. On the first trial, participants were asked to 

hang for 2-3 seconds to check they were 30 cm off the ground by measuring the 

distance with a ruler from the ground to the bottom of the heel. Adjustments to the 

hanging bar were made, if necessary, and the heel height off the ground was checked 

in the next trial. This continued until the participants were 30 cm off the ground and 

typically only required 1-2 checks. Three successful trials were captured for both 

bilateral and unilateral drop landings. Trials were deemed unsuccessful if participants 

pulled themselves up before dropping, did not land with each foot on their individual 

FPs, or were unable to stabilise themselves from landing through to recovery. 

3.5. Data Processing 

Vicon Nexus 2.6.1. was used for data processing. First, the static trial was processed 



Chapter 3: Methods
 

57 

 

to enable automatic detection of markers in the dynamic trials. Any gaps were filled 

(discussed below), and the Plug-In Gait static pipeline was used. Dynamic trial 

markers were then automatically labelled based on the static trial configuration and 

checked for accuracy. 

If 2 or fewer cameras were able to detect a marker at any given time during dynamic 

trials, marker data for the duration of the time undetected was not captured. These 

marker trajectories were gap filled first using a cubic spline interpolation for all gaps 

less than 10 frames. In Vicon Nexus, the spline fill requires a minimum of 5 valid 

frames before and after the gap. For gaps larger than 10 frames, judgement was used 

to determine if spline fill appropriately matched the movement pattern. Any trials that 

had larger than 40 frame gaps were excluded from further analysis.  

Raw marker trajectories and analogue force data were filtered using a low-pass zero-

lag fourth-order Butterworth filter. This type of filter is the most commonly used in 

biomechanics as it effectively reduces random noise while ensuring no time phase 

shifting of the signal (Yu et al., 1999). Kinematic cut-off frequencies were 10Hz for 

step descent and 15 Hz for drop landings. Force data were filtered with a cut-off 

frequency of 200Hz. Cut-off frequencies were determined through both a residual 

analysis and based on previous literature for the respective tasks to determine the 

optimum signal to noise ratio (Winter, 2009, Robertson et al., 2013). Kinematic and 

kinetic cut-off frequencies were set at different levels to ensure no loss of 

physiologically meaningful data in the GRF signal (Roewer et al., 2014). 

Three trials were used for all tasks in subsequent analysis (Diss, 2001). If more than 

three successful trials collected were processed fully with no issues, the best three 

step descent trials were picked based on two criteria: 1) remove leading limb cross-

platform strike trials, and 2) include trials with the closest performed walking speeds. 

Three drop landing trials were collected, and all three were utilised for further analysis. 

These selected trials were exported as C3D files and averaged for subsequent data 



Chapter 3: Methods
 

58 

 

analysis in all tasks.  

3.6. Data Analysis 

All data extraction and statistical analyses were performed in MatLab (R2017a, The 

Mathworks Inc, Natick, MA) using both custom-written code and open-source spm1d 

code (v.M0.4.5, www.spm1d.org). Each experimental chapter underwent similar 

extraction and analysis procedures. All data were normally distributed as determined 

by the Shapiro-Wilk test of normality for the discrete features (p > 0.05) and based on 

normality tests in SPM for loading waveform features (p > 0.05). 

3.6.1. Loading Features Extracted 

The loading waveforms extracted were the same for both tasks. The loading 

waveforms extracted for analysis include the GRF, external knee moments, and 

intersegmental knee forces in all three planes of motion for a total of 9 waveforms. 

Vicon Motion Capture defines the planes of each loading feature as: 

GRF 

X Lateral-Medial 

Y Anterior-Posterior 

Z Vertical 

   

Knee Moment 

X Flexion-Extension 

Y Adduction-Abduction  

Z Internal-External Rotation 

   

Intersegmental 
Knee Forces 

X Anterior-Posterior 

Y Lateral-Medial 

Z Tension-Compression 

where the first direction represents positive values. 
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These loading features were analysed as they have either been found to directly 

relate to cartilage degeneration in the knee joint or represent key features to assess 

medial compartment knee joint loading. All loading features were extracted from the 

intact limb of ITTAs and the dominant limb of control group(s). Step descent 

dominance was determined as the limb that was chosen to lead first with no 

instruction from the investigators. Drop landing control limb dominance was defined 

as the limb chosen first to perform a unilateral landing. Limb dominance was the same 

for both tasks for all except two control participants. 

All waveforms were extracted from initial contact to the end of the braking/absorption 

phase which represents the step-to-step transition. Initial contact was determined 

based on a 20 N threshold of the raw vGRF data sampled at 1000Hz. Initial contact 

for those data sampled at 200Hz (i.e. joint moments) were determined as the nearest 

time frame after dividing the time point of initial contact of the raw vGRF data by 5. 

The end of the braking/absorption phase was determined as the last negative value 

in the anterior-posterior GRF for step descent, and the time point of maximum knee 

flexion for drop landing. All waveform data were time normalised to 100% based on 

the average length of the braking/absorption phase across all participants to avoid 

over-stretching or -shrinking of the data (Page & Epifanio, 2007). Step descent had 

an average braking phase length of 60 frames, whereas drop landing had an average 

absorption phase length of 40 frames. 

3.6.2. Statistical Parametric Mapping Methods 

Pataky and colleagues developed a free open-source software package in MatLab, 

statistical parametric mapping (SPM), for the testing of waveform data including a 

wide range of statistical tests. The statistical functions can be implemented into 

custom-written code and are performed following data processing and extraction of 

data. Waveform data must be time-normalised to align all trials to the same length 

prior to input into the analysis. Time-normalisation matches the length of different 
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trials by linearly converting the time-domain (frames or seconds) to a percentage of 

time (0-100%).  Waveform analyses through SPM are then performed in the same 

manner as any other statistical software and is dependent on the research questions 

and hypotheses. 

3.6.3. Loading Waveform Pilot Studies 

3.6.3.1. Pilot Study 1: Landmark Registration 

This pilot study was conducted to determine if landmark registration improves the 

ability to predict performance measures. This method could reduce the inherent 

waveform timing/phase variability. To assess this, the vGRF waveform during the 

take-off phase of a countermovement jump was utilised as an experimental model. 

The countermovement jump was chosen as it has a good performance indicator (jump 

height) and the vGRF waveform theoretically holds all the information necessary to 

describe jump height based on the impulse-momentum relationship. The results from 

this pilot study, which was subsequently published in the Journal of Biomechanics 

(Moudy et al., 2018), found that a landmark registered waveform was able to increase 

the prediction power to jump height by up to 21% as compared to a time-normalised 

waveform. This suggests that landmark registration is able to reduce the timing/phase 

variability and can increase the physiological validity of waveform analyses. 

A secondary aim of this pilot study was to investigate two key issues that could impact 

the analysis of waveforms after employing landmark registration: the position of the 

landmark (i.e. key events) and the number of landmarks chosen. It is difficult to 

determine the optimal landmark positions as these can change based on the 

movement task demands and research questions. When assessing a specific phase 

of interest, landmark registration may not be necessary. For example, the prediction 

power to jump height was 87% when assessing vGRF in the concentric phase only. 

When assessing the vGRF over the entire take-off phase and registering to the 

beginning of the concentric phase, 86% of the variation in jump height was predicted 
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(Moudy et al., 2018). This suggests that, when aligned with the research questions, 

analysis of the specific phase of interest can be just as powerful without registration.  

The second key issue addressed was determining the optimal number of landmarks 

for the creation of the time-warping function. This pilot study found that one landmark 

provided the greatest ability to align phases of the waveform without the risk of over-

registration. When an additional landmark was added, the ability to predict a 

performance measure reduced by 15% suggesting that over-registration of the 

waveform had occurred. Each subsequent addition of landmarks, up to 4 landmarks, 

were unable to return the prediction power to that performed by one landmark. Over-

registration can occur when the physiological features of a waveform are warped too 

much. This can result in features that are important to the neuromuscular 

requirements of the task to be undetected during waveform analysis. Thus, the results 

from this pilot study denote that the use of landmark registration should be made on 

a case-by-case basis (Crane et al., 2010) with consideration of the above issues.  

3.6.3.2. Pilot Study 2: Level-Walking Gait Analysis 

This thesis postulates that the ambiguity in the commonly researched vGRF and KAM 

loading features in previous amputee walking gait studies is possibly due to their 

discrete nature (e.g., peak magnitudes). This pilot study aimed to examine if the ITTA 

population who participated in the current thesis exhibited increased load in the vGRF 

and KAM discrete features. This pilot study also aimed to determine if waveform 

analysis could detect any high load that was not detected by discrete point analysis 

(DPA). vGRF and KAM loading waveforms and commonly researched discrete 

loading features (loading rates and peak magnitudes) were extracted from the intact 

limb of ITTAs (n = 8) and able-bodied control limbs (n = 22) during habitual level-

walking gait. Waveforms were extracted from initial contact, based on a 20 N 

threshold of the vGRF, to the end of the braking phase. The end of the braking phase 

was determined as the last negative point in the anterior-posterior GRF. Loading rates 
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were calculated by dividing peak magnitude by the time taken to reach peak 

magnitude from initial contact. Independent t-tests were performed to determine 

differences between the intact limb of ITTAs and able-bodied control limbs. SPM was 

used to assess the loading waveforms. Analyses of covariance (ANCOVA) were used 

to account for differences in walking speed (p = 0.031; ITTA: 1.37 ± 0.17 m/s, Control: 

1.53 ± 0.17 m/s). 

No significant differences between groups were found for either discrete features 

(Table 3.2) or loading waveforms (Figure 3.5). After covarying for speed, the intact 

limb had significantly greater peak vGRF (p < 0.001) and vGRF loading rates (p = 

0.022). Waveform analysis, after point-by-point ANCOVA, indicated significantly 

greater vGRF from 21-55% of the absorption phase (p = 0.010; †highlighted phase 

denoted in Figure 3.5). The phase of interest included both the loading rate and peak 

vGRF. This confirms that waveform analysis can detect significant differences 

similarly to DPA. Additionally, slower walking speeds may be a compensatory 

mechanism utilised in level-walking gait to reduce load. While waveform analysis did 

not indicate differences beyond those that were detected by DPA in level-walking gait, 

it is possible that waveform analysis will be able to detect differences in other tasks 

such as step descent when the load demand is increased. 

Table 3.2. Discrete loading features (mean ± SD) during habitual 

level-walking gait for the intact limb of ITTAs and control limbs 

 ITTA Control p-value 

vGRF    

Peak (N/kg) 12.3 ± 1.4 12.0 ± 1.2 0.489 

Loading Rate (N/kg/s) 81.7 ± 21 83.5 ± 15 0.804 

KAM    

Peak (Nm/kg) 0.63 ± 0.3 0.74 ± 0.3 0.436 

Loading Rate (Nm/kg/s) 4.93 ± 1.4 5.72 ± 1.8 0.271 
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This thesis and previous literature have also postulated that loading features outside 

of those typically examined (e.g. knee flexor moment, intersegmental knee forces) 

could indicate overloading in walking gait. Waveform analysis was additionally 

performed on the anterior-posterior and medial-lateral GRF; knee flexor and rotational 

moments; and the anterior, medial, and compressive intersegmental knee forces. 

DPA was not conducted on these loading waveforms given the lack of past research 

to identify a priori appropriate features which could be extracted for a DPA and results 

from the above analysis indicated that DPA and waveform analysis detect similar 

significant differences. No significant differences were present between the intact limb 

of ITTAs and controls limbs for any loading waveform (Figure 3.6). After covarying for 

speed, the compressive knee force was significantly greater in the intact limb from 

23-55% of the braking phase (p = 0.007). This phase corresponds with the significant 

phase from the vGRF after covarying for speed. This suggests that there is an 

indication of overloading occurring in level-walking gait in features other than vGRF 

and KAM, yet this overloading is being reduced by decreases in walking speed. Given 

the limited significant differences and the increased risk of joint degeneration in the 

Figure 3.5. A) vGRF and B) KAM loading waveforms for the intact limb of ITTAs (dashed line; 
n = 8) and control limbs (solid line, n = 22) during the absorption phase of habitual level-walking 
gait. †highlighted area represents the phase that became significant after covarying for speed 
with p-value noted. Each group’s waveform data represents the mean of each participant’s 
mean data. 
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intact limb of ITTAs, it is possible that overloading, if it is a mechanism of joint 

degeneration in this population, may be more prominent in other high impact activities 

that have greater load demand, such as step descent.  

 

3.6.4. Movement Features Extracted 

The specific joint mechanic features extracted for each high impact task are 

discussed in detail within each experimental chapter methods sections. These 

movement features included joint angles, ROM, lower-limb joint coordination, powers, 

and work done as measures of shock absorption. These features have been 

previously shown to be 1) important in the performance of a step descent (van Dieën 

Figure 3.6. Loading waveforms for the intact limb of ITTAs (dashed line; n = 8) and control 
limbs (solid line; n = 22) during the absorption phase of habitual level-walking gait. †highlighted 
area represents the phase that became significant after covarying for speed with p-value noted. 
Each group’s waveform data represents the mean of each participant’s mean data. 
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et al., 2008, Barnett et al., 2014), 2) measures of shock absorption in other activities 

(DeVita & Skelly, 1992, Pollard et al., 2010, Blackburn & Padua, 2009, Norcross et 

al., 2010), and 3) representations of the spring-mass model and how the body 

attenuates a force (McGowan et al., 2012, Blickhan, 1989, Butler et al., 2003). 

In this thesis, joint coordination was calculated by determining coupling angles as a 

simple approach to quantify joint coordination. This approach does not require a 

greater amount of data manipulation than that required to calculate joint angles 

(Hamill et al., 2000). Additionally, coupling angles provide an easy interpretation of 

the joint coupling mechanisms during dynamic movement that is lost when utilising 

other measures of coordination (e.g. continuous relative phasing).  

3.6.4.1. Calculation of Coupling Angles 

Coupling angles are calculated from an angle-angle plot. An angle-angle plot is simply 

the relation of one joint motion relative to a secondary joint motion over time (Figure 

3.7).  

 

Figure 3.7. An example of an angle-angle plot for sagittal plane ankle and knee joint 
motion performed in the leading limb during a step descent for the braking phase. 
Initial contact is denoted by the black circle. The coupling angle is represented by 𝜃. 
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The coupling angle (𝜃) is calculated as the angular orientation between two adjacent 

points relative to the right horizontal (Sparrow et al., 1987, Tepavac & Field-Fote, 

2001, Chang et al., 2008). The coupling angle is calculated by using the following 

equations:  

𝜃௧ =  𝑡𝑎𝑛ିଵ ൬
𝑌௧ାଵ −  𝑌௧

𝑋௧ାଵ −  𝑋௧
൰ ,    𝑤ℎ𝑒𝑟𝑒 𝑡 = 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 

Y represents the distal joint angular position, and X represents the proximal joint 

angular position. 

if 𝜃 < 0 

𝜃௧ =  𝜃௧ + 2𝜋 

The output from the above calculations represent the coupling angle in radians and 

can be converted to degrees by the following: 

𝜃 =
180°

𝜃𝜋
 

This results in a range of coupling angle values from 0° to 360° (Figure 3.8). Coupling 

angles of 0°, 90°, 180°, and 270° represent single joint movement and 45°, 135°, 

225°, and 315° indicate equal motion between the two joints (Hamill et al., 2000). 

When the proximal joint is moving individually, the coupling angle is 0° or 180° 

whereas 90° and 270° represents distal joint motion. When the two joints are moving 

equally in the same direction (in-phase strategy), the values are 45° and 225°. Equal, 

but opposite joint movement (anti-phase strategy), occurs at 135° and 315°. The 

discontinuity seen in Figure 3.8 at ~20% of the absorption phase represents a 

redundancy in the coupling angles (i.e., 0° and 360° represent the same joint motion).  
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After calculating the coupling angles, these values can be used similar to any other 

movement feature extracted and can be input into traditional statistical analyses. 

Waveform analysis of the coupling angles was not possible due to the issues 

surrounding the 0°/360° position. These values denote the same coordination 

approach yet can result in ‘cliffs’ making waveform analysis results difficult to interpret 

(Figure 3.11). Therefore, an appropriate reduction of the waveforms was necessary 

for further comparisons between ITTAs and able-bodied controls in both step descent 

and drop landing tasks.  

In the leading limb during step descent, ‘cliffs’ were predominant in the initial heel 

contact (HC) group (Figure 3.9). Therefore, the leading limb average coupling angle 

was calculated for the duration of the double support phase (denoted by vertical 

dashed line). This approach was deemed appropriate as the waveform was relatively 

flat during the double support phase for ITTAs and controls performing a toe contact 

strategy (TC), the majority of differences occurred in this phase between groups, and 

Figure 3.8. Coupling angle calculated from ankle-knee angle-angle plot for a 
single participant performing an initial heel contact during step descent 
throughout the braking phase. 
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after double support ended there were limited differences present between groups. 

As the double support phase concluded after the ‘cliffs’ appeared for the HC group, 

the values after the ‘cliff’ were continued upwards past 360°. This was done to ensure 

that values close to 360° were not being averaged with values close to 0° which would 

result in average values of ~180° that are not indicative of the coordination strategy 

performed. If average values were above 360°, this would denote a coupling angle 

value of slightly above 0°. However, this did not occur as all average values for the 

HC group were below 360°. 

 

 

Figure 3.9. Lower-limb joint pair coupling angle waveforms for the duration of the braking 
phase in the leading limb for the heel initial contact (black), toe initial contact (red), and intact 
limb of ITTAs (blue) groups. The vertical dashed line denotes the end of the double support 
phase. Three trials for each participant is presented. 
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The trailing limb had two phases of interest: single limb support (phase 1) and double 

limb support (phase 2). For phase 1, the coupling angles for the knee-hip and hip-

ankle joint pairs were relative flat (Figure 3.10). The ankle-knee coupling angles, 

however, presented with a constant negative slope. This coupling angle could be 

reduced by calculating the difference in the coupling angle at the beginning of the 

phase to the end of the phase. However, the constant negative slope was only 

apparent for the HC group and only in the ankle-knee joint pair. Therefore, the 

average coupling angle was calculated for phase 1 and phase 2. As the hip-ankle 

joint pair does have a definite shift in coupling angle strategy from ~60-75% of the 

braking phase (representing the shift into the propulsion phase), this portion of the 

Figure 3.10. Trailing limb lower-limb joint pair coupling angle waveforms for the heel initial 
contact (black), toe initial contact (red), and intact limb of ITTAs (blue) groups. The vertical 
dashed line denotes the end of the single limb support phase. Three trials for each participant 
is presented. 
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phase was removed from the average calculation for phase 1. Both the HC and TC 

groups had limited ‘cliffs’ during both phases of the trailing limb for all lower-limb joint 

pairs. The prosthetic limb of ITTAs, however, had many ‘cliffs’ within the ankle-knee 

joint pair coupling angle which denotes a coupling angle around the 0°/360° point with 

limited changes across the single and double support trailing limb phases. This was 

adequately represented by the reduction utilised above. 

During drop landings, the average coupling angle was calculated for the initial loading 

response phase when landing due to the many ‘cliffs’ occurring after peak vGRF 

occurred. Peak vGRF was used as the point indicating the end of the initial loading 

Figure 3.11. Unilateral drop landing joint pair coupling angle waveforms for the intact limb (IL) 
of ITTAs (blue) and dominant control limbs (DCL; black). The black vertical dashed line denotes 
the average time point at which peak vGRF occurred. All trials are presented for each 
participant. 
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response phase as peak magnitude from the other loading waveforms occurred at a 

similar time point. Figure 3.11 and Figure 3.12 depict the relatively flat slope of the 

initial loading response for all lower-limb joint pairs (Hughes & Watkins, 2008) 

indicating this reduction is appropriate. 

 

 

Figure 3.12. Bilateral drop landing joint pair coupling angle waveforms for the intact limb (IL) 
of ITTAs (blue) and dominant control limbs (DCL; black). The black vertical dashed line 
denotes the average time point at which peak vGRF occurred. All trials are presented for 
each participant. 
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Chapter 4.  

Mechanics of a step descent in 

able-bodied individuals 

 

4.1. Introduction 

When stepping down from a raised surface, the leading limb must absorb increased 

kinetic energy, relative to level walking, while the trailing limb must safely control the 

lowering of the centre of mass (CoM) through increased eccentric muscular activation 

and subsequently propel the CoM to continue forward progression (Jones et al., 2006, 

van Dieën et al., 2007, Barnett et al., 2014, van Dieën et al., 2008). Yet, unlike level 

walking and stair descent, the biomechanical strategies adopted to achieve a step 

descent are not well understood. Thus, the development of load and joint mechanics 

of a step descent must first be established in able-bodied controls. Two step descent 

strategies have been identified, based on the contact area of the foot (Freedman & 

Kent, 1987), whereby initial contact with the leading limb is made with either the heel 

or toe. Factors that have been suggested to lead to the choice of descent strategy 

include step height (van Dieën et al., 2008, Gerstle et al., 2017), walking speed (van 

Dieën et al., 2008), age (van Dieën & Pijnappels, 2009), ankle joint stability (Gerstle 

et al., 2018), and whole body stability (van Dieën & Pijnappels, 2009). A discussion 

on these factors is included in Chapter 2 Section 2.4.  

As there is an increased loading demand, relative to level walking gait, during step 

descent (Christina & Cavanagh, 2002) and stair descent (Mian et al., 2007, Paquette 
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et al., 2014, Novak & Brouwer, 2011), it is important to understand the role of the 

descent strategy in the development of load. Repetitive overloading, specifically at 

the knee joint, has been associated with joint cartilage degeneration (Arokoski et al., 

2000) which can lead to knee pain and subsequently knee osteoarthritis (Hensor et 

al., 2015, Miyazaki et al., 2002). Initial loading rates, frontal plane loading, and knee 

joint forces are measures of load that have been linked to knee joint degeneration 

(Mündermann et al., 2005). van Dieën et al. (2008) examined peak vertical ground 

reaction force (vGRF) in the leading limb during a step descent which indicated that 

a toe landing reduced the vertical impact force compared to a heel landing (920 ± 265 

N vs 1507 ± 360 N, respectively) due to increased ankle joint work done in the leading 

limb. They suggested that the increased work required to complete a toe landing was 

preferred at higher heights and speeds to either control momentum or to reduce 

impact forces. To date, only the peak vGRF has been analysed for this task and no 

analysis has been completed on the load at the knee joint. Given the limited research 

on limb and joint loading when performing a step descent, waveform analysis can 

determine phases of variation between descent strategies in able-bodied individuals 

without relying on a possibly biased discrete a priori approach. The loading response 

phase of the leading limb has been defined as the period of double support in walking 

and stair descent literature (Zachazewski et al., 1993). The dynamic walking theory 

step-to-step transition has suggested that the negative work associated with loading 

of the limb can occur beyond that of double support. Thus, analysis of the braking 

phase for the leading limb would encompass all the time points in which the limb is 

loading/braking. Further research is required to investigate the development of load 

in both descent strategies which could indicate a preferred load-avoidance approach 

and reduce the risk of joint degeneration. 

Literature examining the role of the leading limb when performing step or stair 

descents have identified discrete movement features that are important for the 
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completion of the task (van Dieën et al., 2008, Buckley et al., 2013) and have also 

been shown to be important for shock absorption in other tasks to attenuate the forces 

acting on the body (DeVita & Skelly, 1992, Pollard et al., 2010, Blackburn & Padua, 

2009, Norcross et al., 2010). Further, these discrete features (joint flexion angles, 

range of motion (ROM), peak joint powers, and joint work) have been found to be 

significantly different between individuals with knee joint degeneration and healthy 

able-bodied controls during stair descent (Igawa & Katsuhira, 2014). van Dieën et al. 

(2008) found that a toe initial contact (TC), compared to a heel initial contact (HC), 

had significantly greater peak power and work done at the ankle joint while there was 

significantly reduced peak power and work done at the knee and hip joints. The 

participants in the van Dieën et al. (2008) study were instructed to perform both 

contact strategies at a controlled speed, thus, it is unclear if these leading limb joint 

mechanics are consistent with ‘natural’ performance. 

The dynamic walking theory has also demonstrated that a between-limb influence is 

present in the production of efficient movement (Kuo, 2007, Vanderpool et al., 2008, 

Morgenroth et al., 2011, Donelan et al., 2002b). Thus, it is plausible that the trailing 

limb mechanics of a step descent may influence the descent strategy mechanics of 

the leading limb and subsequently the development of load. Of the few step descent 

studies investigating the mechanics of the trailing limb, analysis consisted of the entire 

trailing limb stance phase (van Dieën et al., 2007), the single support phase to assess 

the lowering of the CoM (Selfe et al., 2008), or the propulsion phase features defined 

as the double support phase (van Dieën et al., 2008). While not well-defined, these 

studies suggest that there are two ‘key’ phases for completion of a step descent in 

the trailing limb: lowering of the CoM and propulsion. The only study assessing HC 

versus TC strategies found no significant differences in the trailing limb mechanics 

(van Dieën et al., 2008). It is possible that no significant differences were present in 

the trailing limb due to the analysis of individual joints. Inter-joint coordination 
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strategies can provide additional information on the relative motion of one joint on 

another in the performance of movement tasks (Lu et al., 2008, Nematollahi et al., 

2016) which may be related to injury mechanisms (Hughes & Watkins, 2008, Doherty 

et al., 2014). Further, the van Dieën et al. (2008) study only assessed the propulsive 

phase and controlled for walking speed, suggesting similar propulsion was required 

to continue forward progression. As the step-to-step transition begins earlier than the 

double support phase (associated with the majority of propulsion), investigation into 

the single support phase when lowering the CoM could provide additional insight on 

the effect of the trailing limb mechanics on the leading limb descent strategy and 

subsequent development of lead limb loading.  

Therefore, the purpose of this study was to determine if the load experienced is 

different for young healthy participants completing either a TC or HC descent strategy 

during a step descent from 14 cm (the height about which the strategy preference 

appears to be less clear). A secondary aim of this study was to determine differences 

in the lower-limb joint mechanics in the leading and trailing limbs between descent 

strategies. It is hypothesised that a TC performed at a self-selected pace, compared 

to a HC, will result in 1) reduced vertical forces and significantly different knee joint 

loading in the leading limb, 2) altered joint mechanics in the leading limb, beyond that 

of the ankle joint, and 3) significantly different trailing limb mechanics in both sub-

phases between descent strategies.  

4.2. Methods 

Comprehensive methods on data collection are outlined in Section 3.4.4 and the data 

processing undertaken is presented in Section 3.5. of the Methods chapter. Data from 

able-bodied controls only were utilised in the analysis for this chapter. The leading 

limb was chosen by the participant and defined as the limb that first made initial 

contact with the ground in front of the step platform (Figure 4.1A). Participants were 

not instructed to perform a specific descent strategy. Descent strategies were 
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determined by the ankle flexion angle at initial contact. 

4.2.1. Features Extracted 

The loading waveforms extracted are detailed in Chapter 3, Section 3.6.1. In brief, 

GRFs, knee moments, and intersegmental knee forces (KF) in all three dimensions 

were extracted for the duration of the braking phase in the leading limb. The braking 

phase (i.e. leading limb phase) was defined from initial contact to the first positive 

point in the leading limb anterior-posterior GRF (Figure 4.1B). Loading values are 

presented as follows, with the positive direction denoted first: GRFx = lateral-medial, 

GRFy = anterior-posterior, vGRF = vertical, knee external flexor moment (KFM) = 

flexion-extension, knee external adduction moment (KAM) = adductor-abductor, knee 

external rotational moment (KMz) = internal-external, KFx = anterior-posterior, KFy = 

lateral-medial, and KFz = compression. 

To account for the inherent waveform variability between and within participants, 

landmark registration was applied to each loading waveform and each participant’s 

respective time-domain (i.e., the time, in seconds, spent in the braking phase). The 

landmark utilised was defined as the average time point at which peak magnitude 

occurred across all participants in each individual loading waveform. This landmark 

position was selected based on the results from the study by Moudy et al. (2018) 

suggesting that a landmark event within the waveform of interest increases the 

prediction power to a performance feature after aligning to distinct whole-body phases 

(i.e., braking phase). See Chapter 2, Section 2.9. for additional information regarding 

the process and application of landmark registration. Landmark registration was not 

performed on the KMz waveform as there was no discernible landmark. This has been 

discussed in the literature as an issue with waveform analysis (Kneip & Ramsay, 

2008, Ramsay, 2006). 
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Figure 4.1B presents the phase definitions for the leading limb and trailing limb. 

Leading limb discrete movement features were extracted from the braking phase. 

Trailing limb movement features were extracted for the sub-phases representative of 

lowering the CoM (Phase 1) and the phase in which much of propulsion occurs to 

continue forward progression (Phase 2). Trailing limb phase 1 was defined as the 

single support phase from the first positive value in the trailing limb anterior-posterior 

Figure 4.1. A) Depiction of the performance of a step descent with force platform 
placements noted and B) definition of step descent sub-phases for the leading limb (LL; 
dashed lines) and trailing limb (TL; solid lines) based on the vGRF and anterior-
posterior GRF. 

A 

B 
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GRF to leading limb initial contact, as measured by a 20N threshold in the vGRF. 

Phase 2 for the trailing limb was defined as the double support phase from leading 

limb initial contact to trailing limb toe-off. 

The temporal-spatial parameters extracted were stepping speed, step length, double 

support phase duration, and the braking phase duration. Stepping speed was 

calculated based on the displacement over time of the CoM from initial contact of the 

trailing limb on the step platform to toe-off of the leading limb on the ground in front 

of the step platform. Step length was defined as the distance taken by the leading 

limb during descent, measured from the trailing limb toe marker to the leading limb 

toe marker at initial contact.  

To aid in the definition of trailing limb sub-phases and understand the relative 

importance of vertical and horizontal movement between descent strategies, the 

following movement features were extracted: 1) vertical and horizontal CoM velocity 

at initial contact in the leading limb, 2) vertical and horizontal CoM displacement 

during both trailing limb sub-phases, and 3) vGRF and anterior-posterior GRF 

impulses for both trailing limb sub-phases. The CoM displacement was calculated as 

the maximum distance travelled by the CoM. vGRF and anterior-posterior GRF 

impulses were calculated as the area under the force-time curve using the trapezoidal 

rule.  

To understand the shock absorption mechanics of the leading limb between descent 

strategies, the joint angles at initial contact, joint ROM, peak joint powers and joint 

work were extracted in the sagittal plane for the ankle, knee, and hip joints. Frontal 

plane knee joint angle at initial contact and ROM were additionally extracted for the 

leading limb. During trailing limb phase 1, sagittal plane ankle, knee, and hip joint 

ROM, peak joint absorption powers, and joint work were extracted to determine the 

single limb support approach to lowering the CoM. As minimal power absorption at 

the knee joint occurs in phase 1, the average value was calculated for knee power 
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(see Figure D1.2 in Appendix D1). Trailing limb phase 2 features included the joint 

angle at toe-off, peak joint propulsive powers, and joint work for all lower-limb joints. 

These features were extracted to understand the propulsive mechanics. Joint ROM 

and peak power definitions are presented in Appendix D1 for the leading and trailing 

limbs. Positive ROM values indicates joint flexion is occurring, whereas negative 

values indicate joint extension. Individual joint work was calculated as the area under 

the power-time curve for the leading limb and trailing limb phases of interest. For the 

leading limb and trailing limb phase 1, total joint work was calculated as the sum of 

the negative work performed at each joint. Trailing limb phase 2 total joint work was 

calculated as the sum of the positive work from the ankle and hip joint, and 

subsequently summed with the absolute negative work from the knee joint.  

In addition to individual joint motion, joint coordination strategies were calculated as 

coupling angles for both the leading limb and trailing limb. See Section 3.6.4.1 in 

Chapter 3 for a full explanation on the calculation process of the coupling angle. The 

average coupling angle during their respective phases for each lower-limb joint pair 

(ankle-knee, knee-hip, and hip-ankle) were calculated.  

4.2.2. Statistical Analysis 

After reviewing the data, twelve participants performed a HC, and ten performed a 

TC. Independent t-tests were performed to determine differences between groups for 

both the loading waveforms and discrete movement features. Waveforms were 

analysed using statistical parametric mapping (Pataky, 2012). Section 2.7. in Chapter 

2 and Section 3.6.2 in Chapter 3 provide detailed explanations on the functionality 

and implementation of statistical parametric mapping. Additionally, to account for 

possible differences in stepping speed, analyses of covariances (ANCOVA) were 

performed with stepping speed as the covariant for both movement features and 

loading waveforms. Point-by-point ANCOVAs were performed on the non-landmark 

registered loading waveforms.  
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4.3. Results 

There were no significant differences between groups for age, height, or mass (Table 

4.1). Additionally, stepping speed was not significantly different between groups.  

Table 4.1. Participant demographics and stepping speed presented as the mean ± 
SD for the initial heel contact (HC) and initial toe contact (TC) groups 

 HC TC p-value 

Age (years)  32.5 ± 6.4  35.7 ± 6.4 0.257 

Mass (kg) 79.3 ± 15  88.4 ± 8.9 0.098 

Height (cm)   179 ± 6.6   180 ± 6.2 0.669 

Stepping Speed (m/s)  1.54 ± 0.3  1.37 ± 0.1 0.124 

 

4.3.1. Loading Differences 

The landmark registered loading waveform data presented with similar results to the 

non-landmarked registered waveform data, therefore, only the non-landmark 

registered data are presented in Figure 4.2. Any differences present from the 

landmark registered results are noted within the text. Landmark registered 

magnitude-domain, time-domain and warping function waveforms are presented in 

Appendix C1. All significant phases of difference in the loading waveforms remained 

significant after covarying for speed. Additional phases in the loading waveforms that 

became significant after covarying for speed are highlighted in red (Figure 4.2). 

Waveform analysis identified significant differences between HC and TC groups 

during the initial loading response phase (~1-32% of the braking phase), which ended 

at an equivalent time to the end of the double support phase, for all loading waveforms 

(Figure 4.2). Additionally, waveform analysis identified a secondary phase of interest, 

sustained midstance loading phase (~55-96% of the braking phase), in vGRF, 

compressive knee force (KFz) and anterior knee force (KFx) waveforms, and, after 
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covarying for speed, in KAM and anterior-posterior GRF waveforms. 

Within the initial loading phase, vGRF and compressive KFz (Figure 4.2C&I) were 

significantly reduced in the TC group (p < 0.001) from ~2-18% of the braking phase. 

After landmark registration was applied, there were no differences between groups at 

peak vGRF or peak KFz, however, the loading rate to peak vGRF was significantly 

lower for the TC group based on significant differences in the warping function (p < 

0.001; Appendix C1). In the medial-lateral direction, the TC group experienced a 

medial GRFx (p < 0.001; Figure 4.2A) from 1-17% while the HC group experienced a 

lateral GRFx. This phase corresponded to a significantly greater medial KFy (p = 

0.045; Figure 4.2G) from 10-13% in the TC group. The second significant GRFx 

phase from 26-29% of the braking phase was no longer present after aligning to the 

peak magnitude. The GRFx time-domain, however, was significantly different 

indicating a lower loading rate in the TC group (p < 0.001) with no significant 

difference at peak minimum magnitude. A significantly reduced KAM was 

experienced from ~20-36% in the TC group (p < 0.001; Figure 4.2D). After landmark 

registration, peak KAM magnitude was not significantly different between groups, 

however, significant differences in the KAM time-domain suggested that the KAM 

loading rate was significantly lower in the TC group (p < 0.001). 

In the anterior-posterior direction, the HC group experienced an initial anterior GRFy 

that was not present in the TC group from ~1-8% of the braking phase (p = 0.008; 

Figure 4.2B). The greater posterior GRFy in the TC group was coupled with a 

significantly greater anterior KFx (p = 0.034; Figure 4.2H) and KFM (p = 0.043; Figure 

4.2E). The KFM for the TC group exhibited a significantly reduced magnitude from 

10-30% of the braking phase (p < 0.001). After registering to peak KFM, there was 

no difference at peak magnitude. Lastly, there was a significantly greater internal 

rotation (Figure 4.2F) in the TC group from 1-5% (p = 0.036) and 7-15% (p = 0.017). 

Peak internal rotation was also significantly greater in the TC group (p = 0.001).  
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The sustained loading phase magnitude in the vGRF and compressive KFz was 

significantly greater in the TC group from ~56-96% of the braking phase (p < 0.001). 

The anterior KFx was also significantly greater in the TC group from 80-86% of the 

braking phase (p = 0.027) and, after covarying for speed, the significant phase was 

maintained and grew to encompass 52-96% of the braking phase (p = 0.015). After 

covarying for differences in speed between groups, the TC group was additionally 

found to have maintained a significantly greater posterior GRFy from 57-75% (p = 

0.036) and tended to maintain a significantly greater KAM from 57-95% (p = 0.066). 

 

Figure 4.2. Leading limb A-C) GRF, D-F) knee moment, and G-I) intersegmental knee force 
waveforms for the initial heel contact group (HC; black solid line) and the initial toe contact 
group (TC; blue dashed line). The phases of significant difference are highlighted in grey with 
p-values noted. †Red highlighted areas represent phases that became significant or trended 
towards significance after covarying for speed. The black vertical dashed line represents the 
average time point at which the end of the double support phase occurred across all 
participant trials. 
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4.3.2. Movement Differences 

To perform the step descent, the TC group utilised a shorter step length and spent 

less time in the braking phase. Additionally, the horizontal velocity at initial contact 

was significantly lower compared to the HC group (Table 4.2). These differences were 

maintained after covarying for speed (p ≤ 0.021). 

Table 4.2. Whole-body features (mean ± SD) presented for the heel initial contact 
(HC) and toe initial contact (TC) groups 

 HC Group TC Group p-value 

Step Length (m)   0.86 ± 0.12† 0.72 ± 0.07 0.002 

Double Support Duration (s)      0.10 ± 0.02 0.10 ± 0.01 0.813 

Braking Phase Duration (s)   0.31 ± 0.03† 0.27 ± 0.03 0.002 

Vertical VIC (m/s)     -0.34 ± 0.05     -0.32 ± 0.03 0.421 

Horizontal VIC (m/s)   0.87 ± 0.15† 0.74 ± 0.06 0.012 

Trailing Limb Phase 1    

CoM Vertical  
Displacement (m) 

 -0.13 ± 0.01†     -0.11 ± 0.01 < 0.001 

CoM Horizontal 
Displacement (m) 

  0.45 ± 0.06† 0.37 ± 0.03 0.002 

Vertical Impulse (N/kg/s)      2.12 ± 0.38 1.80 ± 0.20 0.025 

 Horizontal Impulse (N/kg/s)      0.37 ± 0.10† 0.24 ± 0.04 0.001 

Trailing Limb Phase 2    

CoM Vertical  
Displacement (m) 

   -0.04 ± 0.01†    -0.05 ± 0.01 < 0.001 

CoM Horizontal 
Displacement (m) 

    0.17 ± 0.04     0.18 ± 0.02 0.736 

Vertical Impulse (N/kg/s)     0.40 ± 0.16     0.38 ± 0.11 0.750 

Horizontal Impulse (N/kg/s)     0.17 ± 0.04     0.14 ± 0.04 0.095 

†p < 0.05 significant differences after covarying for speed. VIC = velocity at initial contact 
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The CoM vertical displacement in phase 1 was significantly less in the TC group, 

whereas in phase 2 the displacement was significantly greater than the HC group. 

For phase 1, the horizontal CoM displacement in the TC trailing limb was significantly 

less and the horizontal impulse was significantly lower than the HC group (Table 4.2). 

These differences remained significant after accounting for the effect of speed (p ≤ 

0.023). The vertical impulse during phase 1 was significantly lower in the TC group 

and this tended to remain significant after covarying for speed (p = 0.068). 

4.3.2.1. Leading Limb Features 

Appendix D1 presents the joint angles and powers waveform data in the leading and 

trailing limbs. The TC group underwent a significantly greater ankle ROM than the HC 

group (p < 0.001, ANCOVA: p < 0.001; Figure 4.3A). No significant differences in joint 

angular motion were present between groups at the knee (initial contact: p = 0.920, 

ROM: p = 0.182) or hip (initial contact: p = 0.651, ROM: p = 0.089) joints (ANCOVA: 

p ≥ 0.222). Frontal plane movement features were not significantly different between 

groups (knee angle at initial contact: p = 0.111, HC: 1.04 ± 3.1°, TC: 3.68 ± 4.3°; knee 

ROM: p = 0.845, HC: 5.69 ± 4.3°, TC: 5.27 ± 5.5°; ANCOVA: p ≥ 0.424). 

Joint coordination, as measured by the coupling angle, was significantly different 

between groups for all lower-limb joint pairs (p ≤ 0.030, ANCOVA: p ≤ 0.032; Figure 

4.3B) during initial loading. The TC group ankle-knee coupling angle of 60 ± 8° 

denotes an in-phase flexion strategy whereas the HC group performed a knee flexion 

strategy with some ankle plantarflexion (348 ± 15°; p < 0.001, ANCOVA: p < 0.001). 

The knee-hip coupling strategy performed by both groups represents a primarily knee 

flexion only strategy, however, the TC group extended the hip while flexing the knee 

(103 ± 13°; p = 0.030, ANCOVA: p = 0.032). The hip-ankle coupling strategy 

performed by the TC group was an ankle dorsiflexion only strategy (95 ± 8°), while 

the HC group performed primarily a hip flexion strategy with some ankle plantarflexion 

(343 ± 33°; p < 0.001, ANCOVA: p < 0.001). It should be noted that all HC participants 
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performed an initial hip flexion before extending the hip which was absent in the TC 

group (Figure D1.1 in Appendix D1). 

 

Figure 4.3. Leading limb (LL) and trailing limb (TL) A) individual joint features and B) coupling 
angles for all lower-limb joint pairs in the initial heel contact (HC; black) and initial toe contact 
(TC; grey) groups. *p < 0.05, **p < 0.001 between groups, †p < 0.05 differences that 
remained significant after covarying for speed. IC = initial contact, TO = toe-off, ROM = range 
of motion, A-K = ankle-knee, K-H = knee-hip, H-A = hip-ankle. 
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Leading limb joint power absorption (Figure 4.4) in the TC group indicated significantly 

greater ankle joint (p < 0.001), and significantly lower knee (p = 0.012) and hip (p = 

0.028) joint negative peak powers. Only the ankle joint peak absorption power 

remained significant after covarying for speed (p < 0.001), however, there was a trend 

towards differences being maintained after speed covariation at the knee (p = 0.052) 

and hip (p = 0.069) joints. Overall, the TC group performed 33% greater total joint 

work than the HC group in the leading limb (p = 0.091; Figure 4.5A). The TC group 

performed significantly more work at the ankle joint (p < 0.001, ANCOVA: p < 0.001) 

and significantly less work at the knee joint (p = 0.003, ANCOVA: p = 0.014). The 

work completed at the hip joint was not significantly different between groups (p = 

0.176, ANCOVA: p = 0.346). The TC ankle joint performed 79% of the total lower-

limb joint work, and the HC group utilised the knee joint as the primary shock absorber 

(55%; Figure 4.5B).  

 

Figure 4.4. Lower-limb joint peak absorption and generation powers in the leading limb (LL) 
and trailing limb (TL) during their respective phases of interest in the initial heel contact (HC; 
black) and initial toe contact (TC; grey) groups. *p < 0.05, **p < 0.001 between groups, †p < 
0.05 differences that remained significant after covarying for speed. 
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4.3.2.2. Trailing Limb Features – Phase 1 

The TC group trailing limb hip joint underwent a significantly reduced ROM than the 

HC group (p = 0.011) yet did not remain significant after covarying for speed (p = 

0.135; Figure 4.3A). The trailing limb joint ROM at the ankle (p = 0.900; ANCOVA: p 

= 0.968) and knee (p = 0.488; ANCOVA: p = 0.693) were not significantly different 

between groups. Knee-hip coupling strategies were significantly different between 

groups (p = 0.048) yet did not remain significant after covarying for speed (p = 0.392; 

Figure 4.3B). Ankle-knee (p = 0.275; ANCOVA: p = 0.775) and hip-ankle (p = 0.148, 

ANCOVA: p = 0.814) coupling strategies were not significantly different between 

groups. 

Hip joint peak absorption power was significantly lower in the TC group (p = 0.004) 

and tended to remain significant after covarying for speed (p = 0.053; Figure 4.4). The 

joint peak negative absorption powers at the ankle (p = 0.262, ANCOVA: p = 0.585) 

and knee (p = 0.201, ANCOVA: p = 0.261) were not significantly different between 

groups. The total negative work completed was 29% lower (p = 0.036) in the TC group 

(Figure 4.5A). The TC group completed significantly less work at the hip joint (p = 

0.013) yet did not remain significant after covarying for speed (p = 0.151). The work 

done at the ankle (p = 0.349, ANCOVA: p = 0.754) and knee joints (p = 0.087, 

ANCOVA: p = 0.102) were not significantly different between groups. Both the HC 

and TC groups utilised the ankle joint to the greatest extent to lower the CoM (48% 

and 70%, respectively; Figure 4.5B).  
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Figure 4.5. A) Absolute joint work completed and B) percentage of total negative joint work 
contribution at the ankle (bottom), knee (middle), and hip (top) for the leading limb (LL) 
and trailing limb (TL) phases for the heel initial contact (HC) and toe initial contact (TC) 
groups. 
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4.3.2.3. Trailing Limb Features – Phase 2 

Propulsive joint mechanics were different between groups mainly at the ankle joint. 

The trailing limb ankle angle at toe-off was significantly less plantarflexed in the TC 

group than the HC group (p = 0.032, ANCOVA: p = 0.041; Figure 4.3A). No significant 

differences in the joint angles at toe-off were present for the knee (p = 0.172, 

ANCOVA: p = 0.750) or hip (p = 0.080, ANCOVA: p = 0.725) between groups. The 

ankle-knee (p < 0.001, ANCOVA: p = 0.005) and hip-ankle (p = 0.025, ANCOVA: p = 

0.018) joint coupling strategies were significantly different between groups (Figure 

4.3B). The ankle-knee strategy performed by the HC group (319 ± 8°) was an anti-

phase strategy, while the TC group performed this same anti-phase strategy but with 

a greater contribution from the flexing knee (331 ± 4°). Similarly, the hip-ankle 

coupling angle represented synchronous anti-phase movement with the HC group 

performing with a significantly greater contribution of the hip flexing (HC: 282 ± 8°, 

TC: 291 ± 9°). The coupling strategies for the knee-hip joint pair were not significantly 

different between groups (p = 0.611). 

A significantly reduced ankle power generation was performed in the TC group (p = 

0.020) but was not significant after accounting for speed (p = 0.154; Figure 4.4). The 

joint peak powers for the knee (p = 0.427; ANCOVA: p = 0.614) and hip (p = 0.596, 

ANCOVA: p = 0.114) were not significantly different between groups. The overall 

absolute trailing limb work completed during propulsion by the TC group was 21% 

less (p = 0.044) than the HC group (Figure 4.5A). The negative work completed at 

the knee joint (p = 0.311; ANCOVA: p = 0.260) and the positive work completed at 

the ankle (p = 0.104, ANCOVA: p = 0.202) and hip joint (p = 0.149, ANCOVA: p = 

0.718) were not significantly different between groups. To propel the CoM forward, 

both groups utilised the ankle joint to the greatest extent, as noted by the percentage 

of total work completed (52-56%; Figure 4.5B), followed by the knee (25-27%) then 

the hip (19-21%).  
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4.4. Discussion 

This study aimed to investigate differences between TC and HC step descent 

strategies in whole-limb and joint load and underpinning joint mechanics of the lower-

limbs. The main findings suggest that a TC may reduce the initial rate of load to peak 

magnitude for the medial GRFx, KAM, and vGRF with no significant differences at 

peak magnitude; increase the initial contact magnitudes in the medial (GRFx and 

KFy) and anterior-posterior (GRFy, KFM, and KFx) directions; and maintain a greater 

magnitude of sustained load for the vGRF, KFz, KAM, and posterior GRFy (Figure 

4.2). These significant differences were independent of stepping speed; it is possible 

that the differences in load between strategies stemmed from the differences in the 

leading limb mechanics (i.e. the descent strategy chosen). Limited significant 

differences were found in the trailing limb when lowering the CoM and these 

significant differences were due to variation in stepping speed (no longer significant 

after covarying for speed). The propulsive phase trailing limb mechanics, however, 

maintained significant differences after covarying for speed between descent 

strategies. Thus, it is equally plausible that the differences in load between strategies 

could have stemmed from differences in the propulsive phase trailing limb mechanics 

in addition to the leading limb mechanics. 

For level-walking, previous research has indicated that with increases in walking 

speed, peak vGRF increases and midstance minimum force decreases (Silverman et 

al., 2008, Spanjaard et al., 2009). The results from the current study found, using 

waveform analysis, that the HC group had increased force in early stance and a 

decreased force at midstance. The HC group stepping speed tended to be faster 

(1.37 m/s vs 1.54 m/s) and had significantly higher horizontal velocity at initial contact 

compared to the TC group (Table 4.2). When the vGRF data were landmark 

registered, no significant difference was found at peak magnitude; however, the time-

domain was significantly different indicating an effect of the descent strategy on the 
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rate of force (Appendix C). When speed was used as a covariate, the significant 

difference in early stance for vGRF was still featured, indicating that the descent 

strategy influences the rate of force, independent of speed. Further, the ANCOVA 

results for all loading waveforms demonstrated that the significant differences 

between groups were maintained independent of speed. Additional significant phases 

were identified after covarying for speed during the sustained midstance load in the 

posterior GRFy and KAM. These additional phases possibly denote that TCs were 

able to reduce the magnitude of sustained posterior GRFy and KAM magnitudes by 

walking at slower speeds. The majority of differences in load between descent 

strategies in the leading limb are, most likely, due to differences in leading and trailing 

limb mechanics as significant differences in load were maintained independent of 

speed. However, reductions in walking speed may also aid in midstance load 

reduction and will be explored as a mechanism to reduce load in Chapter 6. 

Vertical velocities at initial contact were not significantly different between groups and 

did not become significant after covarying for speed (Table 4.2). This suggests that 

the magnitude of vertical momentum was reduced by the same amount when 

descending the step. Despite the similar vertical velocities at initial contact, significant 

differences were present in the loading waveforms throughout the braking phase. The 

most commonly assessed measures of load are peak KAM and vGRF as these have 

been associated with degeneration of the knee joint cartilage (Vanwanseele et al., 

2010, Zhao et al., 2007, Shelburne et al., 2006), and able-bodied stair descent 

literature has demonstrated that participants exhibit greater peak magnitudes in these 

features, compared to level walking (Paquette et al., 2014, McFadyen & Winter, 1988, 

Novak & Brouwer, 2011). In the current study, however, peak vGRF and peak KAM 

were not significantly different between the landing strategies, yet the rate of initial 

load was significantly reduced in the TC group based on significant differences in the 

time-domain (Appendix C). Loading rates provide an ability to measure how quickly 
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the load is delivered to the body over a certain time phase (Cheung & Rainbow, 2014), 

and it has been suggested that they are a more relevant measure than peak 

magnitudes in assessing joint loading and injury occurrence (Boyd et al., 1991, 

Morgenroth et al., 2014, Mündermann et al., 2005). This results from the current study 

suggest that a TC strategy may have been chosen in the attempt to reduce the initial 

loading rates in vGRF and KAM despite experiencing similar peak magnitudes.  

In addition to vGRF and KAM, significant differences in magnitude immediately 

following initial contact were found in the medial (GRFx and KFy) and anterior-

posterior (GRFy, KFM, and KFx) directions (Figure 4.2). The initial lateral GRFx in the 

HC group from 1-17% is consistent with that found in previous research examining 

level-walking gait which is typically performed with a heel strike at initial contact. The 

TC group, however, had an initial medial GRFx which has been found during stair 

descent, which utilises a TC strategy (Silverman et al., 2014), and in forefoot running 

gait (Nilsson & Thorstensson, 1989). Medial-lateral GRFs are highly influenced by 

changes in the foot contact angles (Simpson & Jiang, 1999) indicating that differences 

during initial medial-lateral GRF loading in the current study are most likely due to the 

contact strategies performed. The HC group had an initial peak anterior GRFy 

coinciding with an initial peak knee external extensor moment and posterior KFx 

which was absent in the TC group. This is consistent with previous research on level-

walking gait and is thought to occur due to a backward deceleration of the heel at 

initial contact. While this heel strike transient is not always present, Hunt et al. (2010) 

found that osteoarthritic individuals who demonstrated a heel strike transient in 

walking gait were more likely to exhibit greater joint degeneration. It is, therefore, 

plausible to suggest that a toe contact strategy, when performing a step descent, may 

reduce early phase loading associated with a greater risk of injury. 

Waveform analysis identified an additional phase of interest (sustained midstance 

loading) that is not typically assessed in biomechanics literature. The TC group 
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maintained greater vertical (vGRF and KFz), medial (KAM), and anterior knee forces 

(KFx). The increased magnitude during the sustained loading phase was possibly 

due to the shorter step length in the TC group (Table 4.2). While the reduced step 

length in the TC group allowed for the leading limb to lengthen to aid in the controlled 

lowering of the CoM, the more vertical alignment may have reduced the ability to 

control the horizontal momentum of the CoM. van Dieën et al. (2007) found that a 

shorter step length in unexpected stepping down resulted in inadequate control of 

forward momentum and a sustained midstance load was evident in the vGRF 

waveforms. This was further confirmed in a follow-up study. van Dieën et al. (2008) 

found a more anterior foot placement was utilised when performing a toe contact 

compared to a heel contact that enabled control over the CoM momentum. The van 

Dieën et al. (2008) results disagree with the current study in which the TC group had 

a shorter step length. As the van Dieën et al. (2008) study instructed participants to 

perform a toe contact strategy, the results from the current study may better reflect 

daily ‘natural’ performance indicating a TC strategy may induce a higher sustained 

magnitude of load in each plane of motion due to the reduced ability to control the 

forward horizontal momentum from a shorter step length. 

The differences in load between descent strategies possibly stemmed from the 

differences in joint mechanics in the leading and trailing limb as alterations were 

independent of stepping speed. The limb lengthening mechanism in the leading limb 

of the TC group in the current study did not reduce the vertical velocity at initial 

contact. This occurred despite the TCs landing with a higher CoM as denoted by the 

significantly reduced CoM vertical displacement during single support of the trailing 

limb (Table 4.2). Thus, the ankle joint was utilised as the main shock absorber (79% 

of total work done) in the TC group compared to the HC group which utilised the knee 

as the main shock absorber (55% of total work done; Figure 4.5B). It is possible that 

the distribution in joint utilisation for shock absorption in the TC group is to avoid 
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reliance on the knee joint in the leading limb. This is possibly further confirmed by the 

significantly less work completed at the knee joint and reduced peak knee joint 

absorption power after covarying for speed in the TC group (p = 0.014 & p = 0.052, 

respectively; Figure 4.4). This finding is consistent with previous step and stair 

descent research which found that a TC utilises the ankle plantarflexor muscles to 

absorb the shock from landing (van Dieën et al., 2007, Spanjaard et al., 2009) while 

an HC strategy requires increased work done at the knee and hip joints (van Dieën 

et al., 2008). It is possible that by utilising the ankle joint as the main shock absorber, 

rather than the knee, a TC strategy may be more efficient at reducing the rate of vGRF 

and KAM and subsequently reducing the risk of developing knee joint comorbidities. 

This is explored further in Chapter 6. 

Previous step descent research had not adequately defined sub-phases of the trailing 

limb which encompassed lowering of the CoM and propulsion. The current study 

attempted to define these two sub-phases. The CoM vertical displacement for both 

groups (Table 4.2) was 6-9 cm greater when lowering the CoM (phase 1) than during 

propulsion (phase 2) for both landing techniques suggesting that the single support 

phase (phase 1) was primarily used to lower the CoM. This demonstrates that the 

defined sub-phases adequately represent the sub-tasks required to perform a step 

descent. The TC group had significantly less CoM vertical displacement in phase 1 

and significantly greater CoM vertical displacement in phase 2 (Table 4.2). This 

indicates that the TC group continued to lower the CoM during the propulsive phase 

to a greater extent than the HC group. In phase 1, the horizontal displacement of the 

CoM and horizontal impulse were also significantly reduced in the TC group (Table 

4.2) suggesting that the TC group placed a greater emphasis on the vertical aspect 

of the step descent rather than continued forward progression. The TC group also 

utilised the trailing limb ankle joint to complete 70% of the total work when lowering 

the CoM while the HC group utilised the ankle joint to complete 48% of the work 
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(Figure 4.5B). It is possible that the TC group may not have required greater work 

from the knee and hip joints (Figure 4.5A) as the extended leading limb reduced the 

amount of vertical displacement required prior to initial contact. However, significant 

differences in the joint mechanics of the trailing limb when lowering the CoM did not 

remain significant after covarying for speed. This indicates that, when performing the 

step descent at the same speed, the TC and HC groups utilised strategies that were 

not significantly different to lower the CoM. However, during propulsion, significant 

differences between both groups were maintained in the trailing limb after covarying 

for speed. The ankle joint was the greatest contributor to propulsion (52-56%) in both 

groups yet was significantly reduced in the TC group (Figure 4.5B). Reduced 

propulsion from the trailing limb has been found to result in a shorter step length 

(Browne & Franz, 2017b) and, as exhibited in TCs, may contribute to the sustained 

magnitude of load. This will be further explored in Chapter 6. 

Dynamic walking models have demonstrated that a between-limb influence is present 

in the production of efficient movement (Kuo, 2007, Vanderpool et al., 2008, 

Morgenroth et al., 2011). The TC group performed 29% less total work in the trailing 

limb when lowering the CoM, 21% less total work during propulsion, and 33% 

increased total work on the leading limb. The greater total work in the leading limb of 

TCs was required to absorb the greater kinetic energy not absorbed by the trailing 

limb prior to initial contact and to aid in continuing forward progression after trailing 

limb toe-off as reduced propulsion was performed by the trailing limb (Morgenroth et 

al., 2011, Adamczyk & Kuo, 2009, Houdijk et al., 2009, Donelan et al., 2002a). Thus, 

it is plausible that the trailing limb mechanics influenced the descent strategy of the 

leading limb and the subsequent magnitude and rate of whole-limb and joint load. 

This will be further explored in Chapter 5. 
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4.5. Conclusion 

The foot contact strategy when stepping down during ongoing walking can affect the 

development of load. Independent of stepping speed, a TC strategy was associated 

with a significantly lower rates of initial vGRF and KAM load; altered initial contact 

magnitudes in the medial-lateral and anterior-posterior directions; and greater 

sustained midstance magnitudes in all three planes of motion. The TC group leading 

limb mechanics utilised the ankle joint, rather than the knee, as the primary shock 

absorber possibly indicating a knee-avoidance strategy. In addition to leading limb 

mechanics, there is some evidence to suggest that the trailing limb joint mechanics 

could influence the development of load. Analysis of individuals with reduced trailing 

limb functionality, such as individuals with unilateral transtibial amputations, could 

help to understand the role of the trailing limb on lead limb loading. Overall, the results 

from the current chapter would suggest that a TC strategy is the preferred descent 

strategy for reducing the magnitude and rate of initial loading of the leading limb.  

4.6. Further Work 

Previous research has postulated that a TC strategy is performed to ensure stability 

(van Dieën et al., 2008, van Dieën & Pijnappels, 2009). The current study on healthy 

able-bodied individuals (no known issues with stability) suggest that TC and HC 

descent strategies result in different loading patterns. This suggests that reductions 

in load may be a factor that drives the adoption of a TC or HC. As load demand 

increases with increases in step height, analysis of limb and joint loading patterns in 

healthy able-bodied individuals at different step heights could help to further 

determine choice of descent strategy. 
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Chapter 5.  

Mechanics of a step descent in 

amputees 

 

5.1. Introduction 

The previous chapter provided good evidence to suggest that the trailing limb 

mechanics during a step descent may influence the descent strategy chosen and 

thereafter the magnitude and rate of limb and joint loading on the leading limb. In 

individuals with unilateral transtibial amputations (ITTAs), the ankle joint and 

surrounding musculature on one side are replaced by a prosthesis. ITTAs may have 

increased difficulty performing a step descent with the prosthetic limb trailing as the 

prosthesis is unable to mimic the functionality of an intact ankle joint (Schmalz et al., 

2007, Powers et al., 1997). The leading intact limb of ITTAs is at an increased risk of 

joint degeneration, which is thought to stem from high load, however the development 

of load in the intact limb of ITTAs during a step descent is unknown. No research has 

been conducted to assess the descent strategy utilised by ITTAs or the compensatory 

strategies performed to complete the task and attenuate load. 

Previous research in ITTA level walking gait have found strong negative correlations 

with prosthetic push-off work and the work demand on the intact limb during the 

braking phase (Morgenroth et al., 2011, Grabowski & D’Andrea, 2013). This has been 

postulated to result in increased intact limb and joint loading which is thought to place 

the intact limb of ITTAs at a 22-27% increased risk of experiencing knee pain and 
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subsequently developing degenerative knee joint diseases compared to able-bodied 

individuals (Struyf et al., 2009, Griffin & Guilak, 2005). It has been assumed that this 

is due to a greater load occurring in the intact limb compared to a control limb 

(Sanderson & Martin, 1997). Inconclusive results from previous walking gait literature 

have found limited to no differences in discrete limb or knee joint loading between 

intact and control limbs (Lloyd et al., 2010, Grabowski & D’Andrea, 2013). In a step-

over-step stair ambulation study on ITTAs (Schmalz et al., 2007), it was found that 

the intact limb experienced a significantly greater peak vertical ground reaction force 

(vGRF) compared to a control limb. Additionally, a faster rate of load was evident as 

the peak magnitude occurred earlier in the intact limb. It is, therefore, possible that 

during a single step descent, the intact limb will experience a greater load compared 

to a control limb. However, no measures of limb or joint loading have been assessed 

when comparing the intact limb of ITTAs to an able-bodied control limb. Thus, 

analysis of the loading waveforms could provide indications on the important phases 

of interest related to joint degeneration (Pataky, 2012) rather than utilising a possibly 

biased discrete a priori approach. 

When the prosthetic limb is trailing during a step descent, the reduced capacity to 

perform work and reduced range of motion (ROM) at the ankle joint must be 

compensated for by increased work at other joints in the prosthetic limb and/or the 

leading intact limb. This is necessary to efficiently reduce the vertical centre of mass 

(CoM) momentum and continue forward progression at a consistent pace. The 

previous chapter found that individuals who performed a toe initial contact (TC), 

compared to a heel initial contact (HC), completed 29% less total work in the trailing 

limb when lowering the CoM, 21% less work during propulsion, and 33% more work 

in the leading limb when loading. The trailing limb ankle joint was utilised to the 

greatest extent to lower the CoM (48-70%) and provide propulsion (52-56%). It is 

possible that ITTAs may utilise a TC as reduced work is required from the trailing 
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limb; however, ITTAs may compensate through increased work done at the knee and 

hip joints in the trailing prosthetic limb and utilise a longer leading limb. Increased 

prosthetic limb hip joint flexion and ‘pull-off’ power during propulsion has been 

demonstrated as a compensatory mechanism in ITTAs during level walking gait to 

accommodate for the reduced joint motion at the prosthetic ankle joint (Sanderson & 

Martin, 1997). Previous stair descent research in ITTAs, which utilises similar 

mechanics to step descent when loading, found increased ankle plantarflexion in the 

leading intact limb during late swing just prior to initial contact (Schmalz et al., 2007). 

Of the limited research conducted on step negotiation in ITTAs, there was only one 

study that examined the leading and trailing limb mechanics when the intact limb led 

during descent (Barnett et al., 2014). However, this study examined the adaptations 

in the first 6-months post-discharge when movement strategies are not fully 

established. As rehabilitation progressed, the research found no preference in 

descent strategy (TC or HC). The study postulated that leading with the intact limb 

during descent may have been used to exploit the functionality of this limb given the 

reduced capacity of the prosthetic limb. It is currently unknown if these compensations 

could influence the descent strategy approach or the development of load in the 

leading intact limb. 

If compensatory mechanisms elsewhere in the kinematic chain are unable to 

accommodate for the reduced capacity of the prosthetic ankle joint, reduced forward 

progression will result as the vertical component is set during a step descent. 

Stepping speed has been found to decrease when performing an initial toe contact 

strategy (van Dieën et al., 2008) and reductions in walking speed have been 

demonstrated to improve dynamic stability (Browne & Franz, 2017a). Given the linear 

relationship of speed with forces and joint mechanics, it is possible that stepping 

speed may be reduced to maintain limb and joint loading at a lower level rather than 

depend on the joint mechanics alone to reduce the load (Lelas et al., 2003, Browne 
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& Franz, 2017a, Donelan et al., 2002a). In a study assessing TC and HC strategies 

during a step descent between young and elderly populations, it was determined that, 

while the elderly were capable of performing a HC, there was a preference of 

performing initial contact with the toe (van Dieën & Pijnappels, 2009). The greater 

preference for the TC strategy in the elderly population was possibly to maintain the 

vGRF at a level below that which required greater knee strength in the leading limb, 

increased ROM from the trailing limb, and possibly was chosen to mediate against 

pain at the imposed speed. It is well documented that ITTAs walk at a slower speed 

compared to able-bodied individuals. Thus, it is possible that ITTAs may utilise the 

TC strategy. 

Therefore, the purpose of this study was to determine the descent strategy chosen 

by ITTAs (HC or TC) when performing a step descent leading with the intact limb and 

trailing with the prosthetic limb. This study additionally aimed to 1) examine the 

development of limb and joint load in the leading intact limb, 2) assess the shock 

absorption approach of the leading intact limb to attenuate load and 3) determine any 

compensatory strategies of the trailing prosthetic limb compared to able-bodied 

controls. It is first hypothesised that ITTAs will perform a TC strategy. Secondly, the 

load experienced in the intact limb of ITTAs will be significantly greater than that of 

controls performing the same descent strategy. Lastly, it is hypothesised that altered 

joint mechanics will be exhibited in the leading and trailing limbs. In particular, it is 

hypothesised that the leading intact limb of ITTAs, compared to able-bodied controls, 

will adopt a more vertical approach through increasing the plantarflexion of the ankle 

joint, extending the knee and hip joints thus altering the joint coordination strategies, 

and performing greater peak absorption power and work. The trailing prosthetic limb 

will perform reduced joint motion, power, and work and performed altered joint 

coordination strategies when lowering the CoM and propelling the CoM forward. 
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5.2. Methods 

Comprehensive methods on data collection are outlined in Section 3.4. and the data 

processing undertaken is presented in Section 3.5. of the Methods chapter. The 

features extracted, and phase definitions are detailed in Chapter 4 Section 4.2.1.  

In brief, the leading limb and trailing limb phases are defined as noted in Figure 4.1 

in Chapter 4. For the ITTA group, the intact limb was utilised as the leading limb and 

the prosthetic limb as the trailing limb. The control group leading limb was chosen by 

the participant without instruction from the investigators. Loading waveforms were 

extracted for the leading limb only and were landmark registered to the average time 

point across all participants when the peak magnitude occurred within each loading 

waveform (Chapter 2 Section 2.9. ). Discrete movement features were extracted from 

both the leading limb and trailing limb phases of interest as detailed in Chapter 4 

Section 4.2.1. Joint angle and power waveform data are presented in Appendix D1 

for the leading limb (Figure D1.1) and trailing limb (Figure D1.2). 

5.2.1. Statistical Analysis 

All ITTA participants performed a toe initial contact strategy (n = 8), therefore, only 

the able-bodied controls who utilised this strategy were used for comparison (TC; n = 

10). Independent t-tests were performed to determine differences between groups for 

the loading waveforms and discrete movement features. Waveforms were analysed 

using statistical parametric mapping (Chapter 2 Section 2.7.  and Chapter 3 Section 

3.6.2). To determine if any differences in loading patterns or joint mechanisms were 

dependent on variations in stepping speed, analyses of covariances (ANCOVA) were 

additionally performed with speed as a covariate. A point-by-point ANCOVA was 

performed on the non-landmark registered loading waveforms.  
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5.3. Results 

There were no significant differences between groups for age, height, or mass (Table 

5.1). Stepping speed was significantly slower in the ITTA group than the TC group.  

Table 5.1. Participant demographics and stepping speed (mean ± SD) for the ITTA 
and initial toe contact (TC) groups 

 ITTA TC p-value 

Age (years)  40.0 ± 9.0  35.7 ± 6.4 0.254 

Mass (kg) 84.5 ± 18  88.4 ± 8.9 0.546 

Height (cm)   177 ± 7.4   180 ± 6.2 0.423 

Stepping Speed (m/s)    1.14 ± 0.2  1.37 ± 0.1 0.003 

 

One ITTA participant performed an external knee abduction moment and had lateral 

ground and knee joint intersegmental forces. This participant also had a valgus knee 

angle at initial contact. The remaining loading and movement features did not present 

differently for this participant and the results of the analysis did not change whether 

this participant was included. Therefore, this participant was included, and it should 

be noted that part of the variability in loading patterns stem from this ITTA participant. 

5.3.1. Loading Differences 

Loading waveforms are presented in their original temporal-spatial format (Figure 

5.1). See Appendix C2 for the landmark registered results.  

The intact limb of ITTAs experienced significantly less medial GRFx at initial contact 

(1-3% of the braking phase, p = 0.039; Figure 5.1A). This significant phase was due 

to a difference in magnitude (p = 0.040), rather than timing differences between 

groups (no significant difference in time-domain, Appendix C2), and remained 

significant after covarying for speed (p = 0.005). After covarying for speed, from 7-8% 

of the braking phase, the ITTA group had a significantly more posterior GRFy (p = 
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0.029; Figure 5.1B), significantly greater knee flexor moment (KFM; p = 0.031; Figure 

5.1E), and significantly more anterior intersegmental knee force (KFx; p = 0.030; 

Figure 5.1H) compared to the TC group. There were no significant differences 

between groups for the remaining loading waveforms throughout the braking phase. 

 

5.3.2. Movement Differences 

The ITTA group performed the step descent with a significantly shorter step length (p 

= 0.025, ANCOVA: p = 0.997; Table 4.2) and spent significantly less time in double 

support (p = 0.001, ANCOVA: p = 0.013). ITTAs also had significantly reduced 

horizontal velocity at initial contact (p = 0.006, ANCOVA: p = 0.550), CoM vertical 

displacement during trailing limb phase 1 (p < 0.001, ANCOVA: p < 0.001), and CoM 

horizontal displacement during trailing limb phase 2 (p < 0.001, ANCOVA: p = 0.004). 

Figure 5.1. The GRF (A,B,C), knee moment (D,E,F), and intersegmental knee force (G,H,I) 
loading waveforms’ in the intact limb of ITTAs (red dashed line) and leading limb of the initial 
toe contact group (TC; black solid line) for the duration of the braking phase. The phase of 
significant difference is highlighted in grey whereas †red highlighted areas represent phases 
that became significant after covarying for speed. The black vertical dashed line represents the 
average time point at which the end of the double support phase occurred across all participant 
trials. 
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Additionally, the trailing limb vertical and horizontal impulse in phase 2 were 

significantly reduced in the ITTA group (p < 0.001, ANCOVA: p ≤ 0.013).  

 

Table 5.2. Mean ± SD of the whole-body features for the ITTA and initial toe contact 
(TC) control groups 

 ITTA Group TC Group p-value 

Step Length (m) 0.63 ± 0.09 0.72 ± 0.07 0.025 

Double Support Duration (s) 0.07 ± 0.02† 0.10 ± 0.01 0.001 

Braking Phase Duration (s) 0.26 ± 0.02 0.27 ± 0.03 0.707 

Vertical VIC (m/s) -0.32 ± 0.08 -0.32 ± 0.03 0.955 

Horizontal VIC (m/s) 0.62 ± 0.10 0.74 ± 0.06 0.006 

Trailing Limb Phase 1    

CoM Vertical  
Displacement (m) 

-0.07 ± 0.01† -0.11 ± 0.01 <0.001 

CoM Horizontal 
Displacement (m) 

0.34 ± 0.05 0.37 ± 0.03 0.142 

Vertical Impulse (N/kg/s) 1.59 ± 0.34 1.80 ± 0.20 0.128 

 Horizontal Impulse (N/kg/s) 0.21 ± 0.05 0.24 ± 0.04 0.117 

Trailing Limb Phase 2    

CoM Vertical  
Displacement (m) 

-0.06 ± 0.02 -0.05 ± 0.01 0.147 

CoM Horizontal 
Displacement (m) 

0.11 ± 0.03† 0.18 ± 0.02 <0.001 

Vertical Impulse (N/kg/s) 0.15 ± 0.09† 0.38 ± 0.11 <0.001 

Horizontal Impulse (N/kg/s) 0.05 ± 0.04† 0.14 ± 0.04 <0.001 

†p < 0.05 significant differences after covarying for speed. VIC = velocity at initial contact 
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5.3.2.1. Leading Limb Features 

The ankle angle at initial contact was significantly more plantarflexed in the leading 

limb of ITTAs compared to the TC group (p = 0.024) and tended to remain significant 

after covarying for speed (p = 0.063; Figure 5.2A). No significant differences were 

found for the remaining sagittal plane joint features at any individual joint or for any 

joint coordination coupling angles (p ≥ 0.086, ANCOVA: p ≥ 0.243; Figure 5.2A&B). 

The frontal plane knee joint angle at initial contact (p = 0.173; ITTA: 1.34° ± 1.9; TC: 

3.68° ± 4.3) and ROM (p = 0.323; ITTA: 3.21° ± 1.6; TC: 5.27° ± 5.5) were also not 

significantly different between groups (ANCOVA: p ≥ 0.117). 

Ankle joint peak absorption power was not significantly different between groups (p = 

0.075), yet became significantly greater in the intact limb of ITTAs (p = 0.017) after 

covarying for speed (Figure 5.3). Peak knee (p = 0.887, ANCOVA: p = 0.963) and hip 

(p = 0.744, ANCOVA: p = 0.457) joint absorption powers were not significantly 

different between groups. The total negative work completed in the leading limb was 

not significantly different between groups (p = 0.208), however, the ITTA group 

performed 15% greater total work on average than the TC group (Figure 5.4A). The 

intact limb of ITTAs completed significantly greater work at the ankle joint (p = 0.017, 

ANCOVA: p = 0.014). No significant differences were present in the individual joint 

work at the knee (p = 0.580, ANCOVA: p = 0.865) or hip (p = 0.519, ANCOVA: p = 

0.437) joints. Both the ITTA and TC groups utilised the ankle joint as the primary 

shock absorber (78-80%), followed by the knee (13-14%), then the hip (5-9%; Figure 

5.4B). 
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Figure 5.2. Leading limb and trailing limb A) joint angle features, and B) coupling angles 
for all lower-limb joint pairs.  *p < 0.05, **p < 0.001 significant differences between groups, 
†p < 0.05 significantly different after covarying for speed. IC = initial contact, ROM = range 
of motion, TO = toe-off, A-K = ankle-knee, K-H = knee-hip, H-A = hip-ankle. 
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5.3.2.2. Trailing Limb Features – Phase 1 

When lowering the CoM, the prosthetic trailing limb performed a significantly reduced 

ROM at the ankle (p < 0.001; ANCOVA: p < 0.001) and hip (p = 0.002; ANCOVA: p 

= 0.052) joints, and significantly greater ROM was performed at the knee joint (p = 

0.016; ANCOVA: p = 0.154) compared to the TC group (Figure 5.2A). The ankle-knee 

(p < 0.001, ANCOVA: p < 0.001) and knee-hip (p < 0.001, ANCOVA: p = 0.014) joint 

coordination pairs differed significantly between groups. The ITTA group ankle-knee 

coupling angle of 1 ± 7° denotes a knee flexion only strategy in the prosthetic trailing 

limb, while the TC group performed an in-phase flexion strategy (40 ± 11°; Figure 

5.2B). The knee-hip joint coordination strategy for the prosthetic trailing limb also 

indicated a knee flexion only strategy (98 ± 11°). The TC group performed an anti-

phase strategy (127 ± 12°) where the knee flexed synchronously with an extending 

hip. The hip-ankle coordination strategies were not significantly different between 

groups (p = 0.381, ANCOVA: p = 0.471). 

Peak joint absorption powers were significantly reduced in the ITTA group at the ankle 

joint (p < 0.001, ANCOVA: p < 0.001) and significantly greater at the knee joint (p = 

0.040, ANCOVA: p = 0.119) compared to the TC group (Figure 5.3). No significant 

difference in peak absorption power was present at the hip joint (p = 0.891, ANCOVA: 

p = 0.875). The total negative work completed by the trailing prosthetic limb during 

single support was significantly reduced (p = 0.004) by 58% compared to the TC 

group (Figure 5.4A). The negative work completed by the prosthetic limb in ITTAs 

was significantly lower at the ankle joint (p < 0.001, ANCOVA: p < 0.001) and hip joint 

(p = 0.013, ANCOVA: p = 0.255), and significantly greater at the knee joint (p = 0.013, 

ANCOVA: p = 0.072). The prosthetic trailing limb primarily utilised the knee joint 

(78%), while the TC group utilised the ankle joint (70%) to lower the CoM during single 

support (Figure 5.4B). 
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5.3.2.3. Trailing Limb Features – Phase 2 

For continued forward progression, the prosthetic trailing limb of ITTAs had a 

significantly greater hip flexion angle at toe-off (p = 0.011, ANCOVA: p = 0.553; Figure 

5.2A). The toe-off flexion angles at the ankle (p = 0.945, ANCOVA: p = 0.476) and 

knee (p = 0.522, ANCOVA: p = 0.474) were not significantly different between groups. 

However, the ankle-knee coordination strategy was significantly different between 

groups (p = 0.006, ANCOVA: p = 0.039; Figure 5.2B). The ITTA prosthetic limb (343 

± 11°) performed a knee joint flexion strategy to propel the CoM, while the TC group 

(330 ± 4°) utilised an anti-phase knee flexion strategy with ankle plantarflexion. 

Similarly, both groups performed an in-phase flexion strategy for the knee-hip joint 

pair with the ITTA group performing greater knee joint flexion (p = 0.014; 85 ± 9°) than 

the TC group (77 ± 3°). This was not significant after speed covariation (p = 0.109). 

The hip-ankle coupling strategy was not significantly different between groups (p = 

0.466, ANCOVA: p = 0.770). 

Figure 5.3. Joint peak powers in the leading limb (LL) and trailing limb (TL) phase 1 and 
phase 2 for the ITTA (grey) and TC (black) groups. *p < 0.05, **p < 0.001 significant 
differences between groups, †p < 0.05 significantly different after covarying for speed 
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Figure 5.4. A) Absolute joint work completed and B) percentage joint contribution relative 
to the total joint work completed in the ankle (bottom), knee (middle), hip (top) joints during 
the leading limb (LL) and trailing limb (TL) phases of interest for the ITTA and toe initial 
contact (TC) groups. 
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Ankle joint peak propulsive power was significantly reduced in the trailing prosthetic 

limb of ITTAs (p < 0.001, ANCOVA: p < 0.001; Figure 5.3). The knee joint peak 

absorption power was also significantly reduced in ITTAs (p = 0.017) yet did not 

remain significant after covarying for speed (p = 0.280). Peak hip joint propulsive 

power was not significantly different between groups (p = 0.098, ANCOVA: p = 0.631). 

The total absolute work completed in the prosthetic trailing limb of ITTAs was 

significantly lower (111%, p < 0.001) than the TCs (Figure 5.4A). Individual joint work 

done in the ITTA group was significantly lower at the ankle (p < 0.001, ANCOVA: p < 

0.001), knee (p = 0.005, ANCOVA: p = 0.059), and hip (p < 0.001, ANCOVA: p < 

0.001) joints compared to the TC group. Both the ITTA and TC trailing limbs utilised 

the ankle joint to the greatest extent (52-67%) followed by the knee (27%) then the 

hip joint (6-21%; Figure 5.4B). 

5.4. Discussion 

This study aimed to investigate the descent strategy performed by ITTAs, the loading 

patterns in the intact leading limb, and the underlying mechanics in the leading and 

trailing limbs. As hypothesised, all ITTAs performed a TC strategy. In contrast with 

the second hypothesis, there were limited significant differences in the loading 

patterns between groups despite significantly reduced prosthetic limb motion and 

work done in both trailing limb sub-phases. The ITTAs performed the step descent at 

a significantly slower speed which may have influenced the development of lead limb 

load.  

The few significant differences in load all occurred within the initial loading response. 

It is possible that this resulted from the shorter duration of the double support phase 

in the ITTA group (Table 5.2), suggesting that a quicker shift in work demand from 

the trailing limb to the leading limb occurred. The TC strategy may have been 

performed in order to utilise the functionality of the intact lead limb to accommodate 

for the re-distribution of work demand (Barnett et al., 2014). In agreement with the 
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current study, Schmalz et al. (2007), examining stair descent, found that the leading 

intact limb exhibited greater ankle plantarflexion immediately prior to initial contact 

thereby increasing the length of the limb to aid in lowering the CoM. While the 

Schmalz et al. (2007) study did not assess the trailing limb mechanics, the results 

from the current study suggest that the leading limb compensations were possibly 

from the reduced motion from the trailing limb. It is therefore likely that the limb 

lengthening mechanism was utilised in the ITTA group to aid in lowering the CoM by 

controlling the downward momentum and enhancing gait stability (van Dieën & 

Pijnappels, 2009, van Dieën et al., 2007, Barnett et al., 2014). This suggests that the 

descent strategy chosen was not necessarily an attempt to reduce lead limb load but 

could additionally be due to the reduced functionality of the prosthetic trailing limb 

(Buckley et al., 2013).  

It is also possible that performing the step descent at a slower speed aided in gait 

stability and reducing limb and joint load. After speed covariation, the ITTA group 

experienced significant greater KFM, posterior GRFy, and anterior KFx representing 

the first peak in each waveform at 7-8% of the braking phase (Figure 5.1). This 

denotes that if both groups had performed the step descent at the same speed, the 

ITTA group would have experienced a greater magnitude of load in these loading 

features. Given the limitations in the trailing limb, it is likely that the load experienced 

in the intact limb would have been greater had the step descent not been performed 

at a slower speed. The increased KFM and anterior KFx could suggest reduced 

hamstrings co-activation, which is necessary to aid in stabilising the knee joint 

(Paterno & Hewett, 2008). It is possible that the significantly straighter intact leading 

limb by ITTA participants in the current study, as denoted by the increased ankle 

plantarflexion at initial contact (Figure 5.2), reduced the ability of the hamstrings to 

activate and contributed to the increased anterior KFx. Repetitive high anterior shear 

forces at the knee joint can induce cartilage and ligament damage (Paterno & Hewett, 
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2008, Stergiou et al., 2007) and may be a factor in the increased risk of joint 

degeneration in ITTAs. The results from the current chapter indicate that the reduced 

speed in the ITTA group could be an additional approach to limit lead limb loading. 

This indicates that a toe landing may not be enough to reduce limb and joint loading 

and reductions in stepping speed may be required to limit the load experienced. This 

will be further explored in Chapter 6. 

A possible reason for performing a toe descent strategy is to avoid reliance on the 

knee joint in the leading limb as this joint was only responsible for 13-14% of the total 

work when loading the limb for both groups (Figure 5.4B). Chapter 4 demonstrated 

that a heel initial contact strategy utilises the knee joint as the primary shock absorber 

as limited work can be done by the ankle joint given the reduced plantarflexion ROM 

that can be performed. Previous literature has found similar risk factors in those who 

develop osteoarthritis with other knee injury populations, such as anterior cruciate 

ligament (ACL) injuries. ACL individuals can be up to a three times greater risk of 

injury (including development of osteoarthritis) on the contralateral uninjured limb 

which is thought to stem from the compensatory asymmetrical strategies that increase 

the load on the contralateral limb, similar to ITTAs (Paterno et al., 2012, Wiggins et 

al., 2016, Goerger et al., 2015). Thus, ACL populations may aid in identifying possible 

load avoidance strategies. Nematollahi et al. (2016) examined segment coordination 

in ACL and healthy individuals when performing a step descent. The ACL individuals 

performed in-phase flexion strategies in the leading non-injured limb with a greater 

reliance on the ankle joint. The authors postulated that the knee-avoidance strategy 

would reduce the reliance on the knee joint and, therefore, possibly reduce the risk of 

developing comorbidities associated with knee joint degeneration. The ITTAs and 

TCs in the current study utilised similar ankle-knee in-phase flexion techniques as the 

ACL individuals (Figure 5.2) further suggesting that a TC strategy could be a knee 

load-avoidance approach. 
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It is well established that in elderly populations, muscular strength is lost first in the 

ankle joint musculature (Kerrigan et al., 1998, Judge et al., 1996) and these 

individuals tend to compensate through the use of the knee and hip joint musculature 

(Cofré et al., 2011, DeVita & Hortobagyi, 2000). It would be expected during a step 

descent that this population would utilise a heel contact strategy to avoid the 

increased ankle joint work that is accompanied with a TC strategy. However, elderly 

individuals tend to choose a TC strategy independent of speed or step height, further 

highlighting a possible knee protection priority during descent. It is additionally 

possible that reduced muscular strength in the trailing limb ankle joint in elderly 

individuals is unable to effectively lower and propel the CoM and, thus, the leading 

limb utilises a TC strategy as a compensatory approach (Kuo & Donelan, 2010, 

Adamczyk & Kuo, 2009). 

The trailing limb mechanics differed significantly between groups in both sub-phases. 

The CoM vertical displacement, as noted in Table 5.2, was 6 cm greater in phase 1 

(single support lowering the CoM) than phase 2 (double support propulsion) for the 

TC group. The ITTA group, however, lowered the CoM equally in both phases 

suggesting a different approach for task completion. During single support, the ITTA 

group compensated for the reduced capacity of the prosthetic ankle joint by 

performing greater work at the knee joint (78%; Figure 5.4B). This is in opposition of 

the TC group where 70% of the work to lower the CoM was done by the ankle joint. 

Additionally, the coordination strategies utilised in the prosthetic limb denoted a knee-

flexion only strategy, rather than in combination with the hip or ankle joint (Figure 

5.2B). The inability to coordinate and the reduced joint ROM from the hip and ankle 

joints (Figure 5.2A) in the prosthetic limb possibly resulted in the reduced vertical 

displacement of the CoM during single support. This is further confirmed by the 

extended leading limb ankle joint to aid in lowering the CoM given the limitations from 

the prosthetic trailing limb. The ITTA group in this study may have focused more on 
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the vertical displacement to lower the CoM than to continue forward progression. 

During the propulsive phase (phase 2), the CoM horizontal displacement and 

horizontal impulse were significantly reduced in the ITTA group independent of 

variations in stepping speed (Table 5.2). This indicates that at the same stepping 

speed, ITTAs would prioritise lowering the CoM over propulsion. This is further 

confirmed by the significantly reduced propulsive work done in the prosthetic limb at 

all lower-limb joints. When examining the overall contribution of each joint to the total 

work done, the majority of propulsion was generated by the prosthetic ankle joint in 

ITTAs, whereas the control group coordinated the total work done with the knee and 

hip joints (Figure 5.2B) which was absent in ITTAs. The trailing limb sub-phases may, 

therefore, not be appropriate in the ITTA population as lowering the CoM was a 

prominent feature in both sub-phases.   

While not exhibited between ITTAs and controls performing the same descent 

strategy in the current study, the previous chapter found that the TC group exhibited 

a sustained midstance load independent of differences in speed. It was suggested 

that the sustained magnitude occurred due to the reduced ability to control the forward 

horizontal momentum stemming from a reduced step length. The ITTA group in the 

current study had a shorter step length (although not significant after covarying for 

speed; Table 5.2) and did not experience significantly different sustained load from 

the TC group (Figure 5.1). Therefore, the intact limb of ITTAs also presented with a 

sustained load. The previous chapter additionally postulated that the sustained 

loading phase could be due to reduced work done by the trailing limb. The ITTA group 

in this chapter performed 58% less total negative work in the trailing limb in phase 1, 

111% less total work during phase 2, and 15% increased total work in the leading 

limb. While the work done in trailing limb was significantly reduced in the ITTA group, 

the sustained load was not significantly different. This could have been due to the 

slower stepping speed; however, the sustained loading phase did not become 
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significant after covarying for speed. Thus, it is possibly that the trailing limb 

mechanics may not have as much influence on the sustained midstance load as 

previously postulated in Chapter 4. Further research is warranted to determine the 

movement features in both the leading and trailing limbs that underpin the load 

experienced throughout the braking phase (Chapter 6). 

5.5. Conclusion 

Established ITTAs utilise a toe contact strategy when descending a step of 14 cm, 

representative of standard kerb height. There were few significant differences present 

in the limb and knee joint loading waveforms throughout the braking phase between 

groups. This occurred despite significant differences in the prosthetic trailing limb’s 

ability to lower the CoM and propel the CoM to continue forward progression. ITTAs 

utilised a more vertical approach in the leading intact limb when performing the step 

descent compared to the controls. It is possible that ITTAs performed the TC strategy 

due to the limited functional capacity of the prosthetic trailing limb in both sub-phases 

rather than to reduce the load on the leading limb. The ITTA group performed the 

step descent at a slower speed which could have aided in reducing the load 

experienced throughout the braking phase given the limitations from the prosthetic 

trailing limb. When leading with the intact limb, utilisation of a TC strategy and 

reductions in stepping speed may be effective approaches to reduce the load 

experienced while compensating for limitations present in the prosthetic limb.  

The results from this chapter suggest that a TC strategy, if not already currently 

utilised by ITTAs, should be the preferred descent strategy to mediate the magnitude 

and rate of initial loading of the leading limb. During rehabilitation post-amputation, it 

could be suggested that a TC strategy should be taught as a means of reducing load 

and possibly subsequent reduction of joint degenerative diseases. 
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5.6. Further Work 

As ITTAs are at a greater risk of developing degenerative diseases, it is important to 

understand the joint mechanics that may aid in reducing limb and joint loading. 

Chapter 4 and the current chapter have suggested that trailing limb mechanics, 

leading limb descent strategies, and stepping speed may influence the magnitude 

and rate of limb and knee joint loading throughout the braking phase. No research 

has examined the movement features that most contribute to high load. The next 

chapter will attempt to determine the ‘key’ movement features that underpin high load. 

While the focus of this thesis is on the intact limb leading during descent, trailing with 

the intact limb could enhance gait stability by utilising the functionality of the intact 

limb to lower the CoM and provide adequate propulsion. However, the load demand 

of the trailing limb is unknown, and it is possible that the demand when acting as a 

trailing limb may be greater than that when leading given the reduced ability of the 

prosthetic to take the load when leading. Further research should examine a step 

descent when leading with the prosthetic limb and trailing with the intact limb. 

 



Chapter 6: Mechanisms of Overloading
 

117 

 

Chapter 6.  

Lower-limb movement associated 

with high lead limb loading during a 

step descent 

 

6.1. Introduction 

Overloading of a limb during dynamic movement has been associated with the 

development and progression of degenerative diseases at the knee joint, such as 

osteoarthritis (Miyazaki et al., 2002, Vanwanseele et al., 2010, Thorp et al., 2006, 

Sharma et al., 2003). In injured populations, the un-injured limb is at a greater risk of 

developing comorbidities in the knee joint than healthy able-bodied individuals and is 

thought to stem from altered compensatory movement strategies resulting in high 

load (Paterno et al., 2012, Wiggins et al., 2016, Goerger et al., 2015). However, the 

movement features that contribute to high load are unclear and no research has 

identified these features in tasks outside of walking gait, such as step descent. 

Identification of these features may aid practitioners in the development of 

rehabilitation and exercise protocols to reduce the risk of knee loading related 

diseases in both able-bodied individuals and individuals with pathological gait, such 

as unilateral transtibial amputees (ITTAs). 

In the attempt to reduce load, previous research has been conducted to examine gait 

modifications strategies as an alternative to invasive surgery. Modifications strategies 
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have included walking slower, decreasing stride length, toeing out, ‘medial thrust’, 

and use of walking canes or lateral heel wedges to reduce the first peak knee external 

adduction moment (KAM) (Fregly, 2012). These strategies aim to alter the magnitude 

of the ground reaction force (GRF) (Schmitz & Noehren, 2014) and the joint 

mechanics such that the lever arm of the GRF vector is minimised, thereby reducing 

medial knee joint loading (Hunt et al., 2006, Gerbrands et al., 2014, Schmitz & 

Noehren, 2014). These studies focus on reduction of medial joint loading as 60-80% 

of knee joint load is transmitted through the medial compartment (Erhart et al., 2010). 

KAM is the most commonly assessed measure of load as it has been demonstrated 

to be a good surrogate to assess medial knee joint compartment loading (Zhao et al., 

2007) and has been associated with the severity and progression of degeneration of 

medial compartment joint tissue (Vanwanseele et al., 2010, Thorp et al., 2006, 

Miyazaki et al., 2002). Therefore, it is plausible to suggest that reductions in the vGRF 

and alterations of the joint mechanics to minimise the lever arm, thereby reducing 

KAM, could lower medial knee joint load during a step descent (Hunt et al., 2006, 

Creaby  et al., 2013). 

While slight reductions can occur at peak KAM when walking with any of the gait 

modifications strategies (e.g. walking slower), greater reductions in KAM were found 

over the rest of the stance phase (Fregly, 2012, Fregly et al., 2009, Walter et al., 

2010, Astephen et al., 2008). This suggests the importance of examining features 

outside of peak magnitudes. Astephen & Deluzio (2005) utilised a principal 

component analysis on joint movement and loading waveforms to detect differences 

between osteoarthritic and control participants. This study demonstrated that the 

greatest variation between the two groups occurred during midstance where KAM 

was the greatest contributor in identifying participants with osteoarthritis. This study 

also found that the second most discriminatory feature in the identification of severe 

osteoarthritis was the medial knee joint force that occurred during the initial loading 
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response phase. Previous research has also suggested that loading rates in the initial 

loading response phase are more relevant measures than peak magnitudes in 

assessing joint loading (Morgenroth et al., 2014, Astephen & Deluzio, 2005, Radin & 

Paul, 1971). During step descent, Chapter 4 found no significant differences in the 

loading waveforms at peak magnitudes yet the time to peak was significantly lower 

when performing a toe initial contact strategy. The results from Astephen & Deluzio 

(2005) and Fregly (2012) in conjunction with the step descent results in the current 

thesis indicate the importance of reviewing loading features during initial loading 

response (loading rates) and midstance (sustained load). It is possible that different 

phases of loading could be related to different underlying movement features. 

It has been postulated in previous research that a slower stepping speed may be an 

attempt to improve dynamic stability of the centre of mass (CoM) (van Dieën et al., 

2008, Browne & Franz, 2017a). The previous chapters have additionally provided 

evidence to suggest that slower stepping speeds, in addition to alterations in the joint 

mechanics of the leading and trailing limbs, may be performed in the effort to maintain 

load at a lower level in the vertical, medial, and anterior-posterior directions during 

initial loading and midstance. Further, in level-walking, previous research has 

indicated that as walking speed decreases, peak forces decrease and minimum 

forces during midstance increase (Silverman et al., 2008, Spanjaard et al., 2009). In 

a meta-regression analysis of 19 studies examining peak KAM, Telfer et al. (2017) 

found that a decrease in walking speed of 0.1 m/s was estimated to decrease peak 

KAM by 0.18%bodyweight*height. Additionally, walking speed had the strongest 

effect on peak KAM over modifications in gait mechanics and footwear. However, 

other studies have suggested increases in the duration of load that occurs with 

reduced walking speeds could be detrimental (Robbins & Maly, 2009, Landry et al., 

2007). It is currently unclear if speed alone can explain reductions in load or if it could 

also be due to the descent strategies chosen. 



Chapter 6: Mechanisms of Overloading
 

120 

 

Step and stair descent research have currently postulated that only the underlying 

mechanics in the leading limb are related to reductions in load (van Dieën et al., 2008, 

Schmalz et al., 2007, Lythgo et al., 2007). Gait modification research also tends to 

only examine the limb of interest (i.e. leading limb) without modifying the mechanics 

performed by the contralateral limb (i.e. trailing limb). The results from chapters 4 & 

5 have provided good evidence to suggest that, in the trailing limb, a reduced ability 

to coordinate the lower-limb joints to lower the CoM and decreased propulsive power 

to continue forward progression may affect the leading limb shock absorption 

mechanics (i.e. joint power). Subsequently, these compensatory mechanisms may 

influence the magnitude and rate of load in the leading limb. It is possible that a 

combination of leading and trailing limb joint mechanics may provide an optimal 

approach to performing a step descent with the notion of reducing limb and joint 

loading. 

As repetitive high loading is related to the degeneration of joint cartilage (Arokoski et 

al., 2000), it is important to understand the movement strategies that underpin high 

load. Thus, the purpose of this study was to identify joint mechanics in the leading 

and trailing limbs that are related to high lead limb loading at the ground and in the 

knee joint in the vertical, medial, and anterior-posterior directions when performing a 

step descent during on-going walking. It is hypothesised that speed will be positively 

related to variations in limb and joint load. It is additionally hypothesised that joint 

mechanics in the leading and trailing limb will be significantly related to lower loading 

rates and reduced sustained load. 

6.2. Methods 

The data extraction procedures are outlined in Chapter 4 Section 4.2. . Loading 

waveforms and joint movement data were extracted for the leading and trailing limbs 

of three experimental groups: ITTAs (n = 8) and two able-bodied control groups that 

completed either a heel (n = 12; HC) or toe (n = 10; TC) initial contact descent strategy 
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with the leading limb. The leading limb was defined for the able-bodied controls as 

the first limb chosen to lead during descent, without instruction by the investigators. 

The intact limb of ITTAs was utilised as the leading limb and the prosthetic limb as 

the trailing limb.  

The vGRF, KAM, and anterior-posterior intersegmental knee forces (KFx) were 

assessed. vGRF and KAM load were assessed as they are commonly used across 

the literature to assess limb and joint loading and vGRF, KAM, and KFx were all found 

to be significantly different between descent strategies (Chapter 4 Section 4.3.1). The 

vGRF, KAM, and KFx loading waveforms were reduced to discrete features based on 

the previous chapters results. The vGRF and KAM discrete features included loading 

rates and an average magnitude value of the sustained loading phase. The first 

impact peak in KFx (~7-8% of the braking phase; see Figure 4.2 and Figure 5.1) was 

extracted for further analysis. The braking phase was defined from initial contact to 

the last negative point in the anterior-posterior GRF. Loading rates were calculated 

by dividing peak magnitude by the time taken from initial contact, based on a 20N 

threshold, to the time of peak magnitude. This approach was utilised to avoid 

erroneous calculations associated with impact peaks that were present in the KAM 

waveforms. Additionally, the time point at which peak vGRF occurred was determined 

based on the force platform output due to the higher sampling rate (1000 Hz) to 

ensure greater accuracy in the timing of this peak time point. The average magnitude 

during the sustained midstance loading phase was calculated from 55-100% of the 

braking phase. This was based on the results from Chapter 4 (Section 4.3.1). This 

reduction was deemed appropriate due to the relatively flat plateau occurring within 

this phase. While peak magnitude is another reduction that is commonly used in the 

literature, the previous chapters found no significant differences at peak magnitude in 

the vGRF, KAM, or KFx waveforms between descent strategies or between ITTAs 

and able-bodied controls. Thus, peak magnitude was not included in this analysis.  
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Movement features were extracted from the leading limb and both trailing limb sub-

phases (Section 4.2.1). To maintain power and avoid overfitting the data due to a 

smaller sample size (n = 30), the number of movement features were reduced for 

input into the regression model (Peduzzi et al., 1996). While there are many arbitrary 

rules in determining the number of predictors input into a regression analysis, Austin 

& Steyerberg (2015) found that as little as 2 participants per predictor variable (30 

participants/2 = 15 predictors maximum) enabled accurate estimations of regression 

coefficients, specifically the adjusted R2 value, with less than 10% relative bias 

(systematic error). To account for all phases of interest when performing a step 

descent, movement features were chosen from the temporal-spatial parameters, 

leading limb joint mechanics associated with shock absorption, and both trailing limb 

phases of interest. Trailing limb phase 1 features corresponded to the controlled 

lowering of the CoM and phase 2 features represent the phase in which the majority 

of propulsion occurs to continue forward progression. The movement features chosen 

for further analysis were based on: 1) reducing multicollinearity, 2) significantly 

different features between descent strategies from Chapter 4 Section 4.3.2, and 3) 

significantly different features between ITTAs and controls from Chapter 5 Section 

5.3.2. Multicollinearity of predictor features in a regression model can lead to 

unreliable estimates of regression coefficients (Alın et al., 2009) and make the 

interpretation of regression results difficult. Multicollinearity was assessed based on 

Pearson’s correlation coefficients and variance inflation factors with thresholds of 0.7 

and 10, respectively (O’brien, 2007, Dormann et al., 2013). Multicollinearity results 

and discussion of the final features included in the regression model are presented in 

Table E1.1 in Appendix E. The temporal-spatial movement features selected were 

walking speed (m/s) and duration of the braking phase (s). Absolute ankle, knee, and 

hip peak absorption and propulsive powers (W/kg) were extracting from the leading 

limb and the trailing limb during phase 2 (see Appendix D for definition of peak 

powers). The movement features from trailing limb phase 1 included the ankle-knee, 
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knee-hip, and hip-ankle joint coordination coupling angles (°).  

6.2.1. Statistical Analyses 

Given that there were no significant differences in group demographics and that 

ITTAs did not perform differently to the toe landing control group, all three 

experimental groups were considered a single cohort to increase the variability and 

sample size of the dataset. Pearson’s product moment correlations were performed 

to assess the bivariate relationships between discrete limb and joint loading features 

with each movement feature. The r-values were interpreted as no relationship = r < 

0.3, weak = 0.3 < r < 0.5, moderate = 0.5 < r < 0.7, and strong = 0.7 < r < 1.0. Forced 

entry multiple linear regression was performed to determine the amount of variance 

in the limb and joint loading features that could be explained with all movement 

features entered as predictor features. Features were z-score standardised prior to 

input into the regression model to determine the relative importance of each feature. 

6.3. Results 

Cohort demographics and discrete loading features are presented in Table 6.1. After 

examining the scatter plots for each bivariate correlation, an outlier was detected in 

the KAM loading features only. This outlier was the ITTA participant detected in 

Chapter 5 that had a knee external abduction moment and lateral ground and knee 

forces. As the sample size for this analysis is considered small (typically n > 100), an 

outlier would have a greater effect on the correlation coefficient. An outlier positioned 

away from the regression line effectively decreases the magnitude of the correlation 

coefficients. Therefore, this participant was removed for the analyses involving KAM. 
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Table 6.1. Cohort demographics and discrete loading 
features (mean ± SD) 

Demographics 
Age (years) 35.6 ± 7.6 
Height (cm)  179 ± 6.5 
Mass (kg)     83.7 ± 14 

Loading Rate 
vGRF (N/kg/s) 221 ± 92 
KAM (Nm/kg/s) 9.52 ± 3.7 

Avg. Sustained Load 
vGRF (N/kg) 10.2 ± 2.3 
KAM (Nm/kg) 0.47 ± 0.2 

Impact Peak KFx (N/kg) 1.04 ± 1.8 

 

Bivariate relationships of vGRF, KAM, and KFx loading features with speed are 

presented in Figure 6.1. A moderate relationship existed between increased KFx 

impact peak and slower stepping speeds (Table 6.2). All other loading features had 

weak to no relationships with stepping speed. 

For brevity, only the moderate to strong bivariate relationships with joint mechanics 

are discussed in text (Table 6.2). Higher vGRF loading rates were moderately related 

to increased lead limb peak knee joint absorption powers (p = 0.001). KAM loading 

rates had weak to no relationship with any movement feature (abs. r ≤ 0.42). 

Increased sustained vGRF midstance load was strongly related to reduced time spent 

in the braking phase (p < 0.001) and increased lead limb peak ankle absorption power 

(p < 0.001). A moderate relationship was also found where increased sustained vGRF 

load was significantly related to reduced trailing limb peak propulsive power at the 

ankle (p = 0.003). Increased sustained KAM midstance load was moderately related 

to reduced trailing limb peak knee joint absorption power required to propel the CoM 

forward (p = 0.005). Lastly, increased KFx impact peak was strongly related to greater 

lead limb peak ankle joint absorption power (p < 0.001) and moderately related to 

reduced time spent in the braking phase (p < 0.001). 
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After accounting for all other features, stepping speed was not a significant predictor 

in any regression model (p ≥ 0.092; Table 6.3). Regression analyses indicated that 

the temporal-spatial features and joint mechanics in the leading and trailing limbs 

could explain 45% and 2% of the variance in the vGRF and KAM loading rates, 

Figure 6.1. Bivariate relationships of stepping speed with vGRF and KAM loading rates and 
average sustained midstance magnitudes, and KFx impact peak. Experimental groups are 
denoted as follows: heel initial contact control (HC, circle), toe initial contact control (TC, 
asterisk), and intact limb of ITTAs (square). 
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respectively; 75% and 36% of the variance in the vGRF and KAM sustained load, 

respectively; and 75% of the variance in the KFx impact peak (Table 6.3). The vGRF 

loading rate regression model found that the leading limb knee joint absorption power 

and the trailing limb knee-hip and hip-ankle joint pair coordination strategies were 

significant predictors. The duration of the braking phase was a significant predictor in 

the vGRF sustained load model. Additionally, the trailing limb hip-ankle joint pair and 

peak hip propulsive power tended to be significant predictors. The trailing limb knee 

joint propulsive power was a significant predictor that could explain the variance in 

the KAM sustained load. Lastly, the KFx impact peak was predominantly explained 

by the leading limb peak ankle joint absorption power. 
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6.4. Discussion 

This chapter is the first to examine the relationships of vGRF, KAM, and anterior-

posterior KFx loading with stepping speed and joint mechanics performed in the 

leading and trailing limbs during a step descent. In contrast to the first hypothesis, 

stepping speed was not a significant predictor for any loading feature when controlling 

for all other movement features (Table 6.3). However, the second hypothesis was 

confirmed indicating the importance of leading and trailing limb joint mechanics for 

reducing lead limb loading. The results from this study were able to identify features 

that may aid in reducing lead limb load which could reduce the risk of developing knee 

joint degenerative diseases. 

When performing a step descent, van Dieën and colleagues (2008, 2007) suggested 

that slower stepping speeds are performed to enable greater stability during descent. 

In level-walking, Astephen et al. (2008) suggested that walking speed is reduced in 

response to pain following onset of degenerative diseases. However, Mündermann 

et al. (2004) found, in level-walking, that walking speed only explained 8.9% of the 

variance in peak KAM (a common indicator used to assess the risk of joint 

degeneration) in osteoarthritic patients. Despite the osteoarthritic patients walking at 

slower speeds, there was a wide range of peak KAM values suggesting that walking 

slower doesn’t necessarily relate to lower peak KAM. In agreement with Mündermann 

et al. (2004), the current chapter found that stepping speed was not a significant 

predictor to explain the variance in vGRF and KAM loading rates and sustained 

midstance load, or KFx impact peak after considering the joint mechanics of the 

leading and trailing limbs. This indicates that the slower walking speeds may be a 

consequence of the descent strategy chosen and/or possibly performed to ensure 

stability and to alleviate knee pain.  

Chapters 4 & 5 attempted to examine loading features independent of stepping speed 

by performing analysis of covariance tests. This allowed for the participants to perform 
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the step descent at their self-selected pace while considering variation in stepping 

speed. Chapter 4 demonstrated that loading features would have remained 

significantly different between heel contact (HC) and toe contact (TC) descent 

strategies independent of speed (Figure 4.2). However, chapter 4 did find that there 

was a trend towards an increased KAM sustained load in the TC group indicating that 

a slower stepping speed could reduce this load. Chapter 5 additionally found that the 

reduced speed in ITTAs lowered the anterior-posterior forces (Figure 5.1). While the 

current chapter found a moderate bivariate relationship of KFx impact peak with 

speed (r = -0.51), there were weak relationships of stepping speed with vGRF (abs. r 

< 0.48) and KAM (abs. r < 0.36) loading features. Further, the multiple regression 

results confirm that the joint mechanics, rather than speed (p > 0.092), are important 

in reducing load.  

The bivariate correlation results from this study depicted a clear distinction between 

descent strategies which indicates that the variability in the load are based on whether 

a HC or TC strategy is utilised. A TC strategy utilises the ankle joint as the main shock 

absorber with less contribution from the knee and hip joints (van Dieën et al., 2008). 

This TC strategy was found to develop vGRF and KAM load at a lower rate during 

initial loading and maintain a greater sustained midstance load compared to a HC 

strategy (Chapter 4 & 5). In the current chapter, lower vGRF and KAM loading rates 

were moderately related to reduced lead limb peak knee joint absorption powers, 

consistent with TC strategy (Table 6.2). After controlling for speed and all other 

movement features, peak lead limb ankle joint power was not a major contributor to 

variations in load but rather joint mechanics beyond that of the ankle joint in both the 

leading and trailing limbs were important. This was unexpected given that toe and 

heel descent strategies are defined based on the ankle angle at initial contact in the 

leading limb and that it was moderately related to sustained load. Despite no 

relationship with the leading limb ankle joint, lower vGRF and KAM loading rates were 
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found to be moderately related to reduced lead limb peak knee joint absorption 

powers, consistent with TC strategy (Table 6.2). A reduced lead limb knee joint 

absorption power maintains reliance on the ankle joint as the main shock absorber, 

rather than the knee (Figure 4.5 & Figure 5.4; Nematollahi et al., 2016). Consistent 

with both HC and TC strategies, trailing limb joint coordination strategies during single 

support, which utilised a flexing ankle and knee joint in combination with an extending 

hip joint, was associated with lower vGRF loading rates (Table 6.3). ITTAs tend to 

utilise a knee-flexion only strategy in the trailing limb when lowering the CoM during 

single support. The results from this study suggest the need for the development of 

lower-limb joint coordination in the prosthetic limb of ITTAs. When greater kinetic 

energy is absorbed by the trailing limb, the kinetic energy absorbed by the leading 

limb is reduced (Donelan et al., 2002a) thereby lowering lead limb loading. The in-

phase flexion joint coordination strategies of the trailing limb in combination with the 

leading limb toe initial contact strategy would possibly allow for an adequate share of 

the energy requirements to perform a step descent during initial loading response. 

Thus, this approach would lower vGRF loading rates.  

KFx impact peaks were strongly associated with peak ankle joint power in the leading 

limb (r = 0.84) and, after accounting for speed and all other movement features, was 

maintained as the main contributor to explain the variance in KFx impact peaks (β = 

0.90 ± 0.2, p < 0.001). Increased peak ankle joint power, consistent with TC strategy, 

results in increased anterior KFx. Repetitive high anterior KFx have been suggested 

to induce cartilage and ligament damage (Paterno & Hewett, 2008, Stergiou et al., 

2007) and, during ramp descent in healthy individuals, to be twice the magnitude of 

that experience in level-walking (Kuster et al., 1995, Redfern & DiPasquale, 1997, 

Reed-Jones & Vallis, 2008). This could suggest that a TC strategy may not provide 

as much benefit to load reduction as initially postulated despite reducing vGRF 

loading rates. However, the variation in KFx stemmed from the HC group 
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experiencing a posterior KFx impact peak while both TC and ITTA groups (performed 

a TC) had an initial anterior KFx. The posterior KFx in the HC group depicts a heel 

strike transient that is commonly seen in level-walking gait. Hunt et al. (2010) found 

that osteoarthritic individuals with heel strike transients were more likely to exhibit 

greater joint degeneration. Thus, it is unclear if an initial anterior KFx associated with 

a TC strategy is detrimental to the knee joint tissue. Despite this, there is a benefit 

from performing a TC strategy in reducing vGRF and KAM loading rates and is, 

therefore, an appropriate strategy to reduce initial lead limb loading. 

Sustained load correlations were in opposition to that found during initial loading 

response. Decreased sustained vGRF and KAM loading were moderately related to 

reduced lead limb ankle joint power, consistent with a HC strategy (Table 6.2). 

Reduced sustained vGRF and KAM loading were also moderately correlated with 

increased trailing limb propulsive power at the ankle and knee joints and reduced 

vGRF sustained load was strongly correlated with a greater time spent in the braking 

phase. The sustained load correlations confirm the hypothesis from the previous two 

chapters which suggested that reduced propulsive power increased the magnitude of 

the sustained load. After accounting for other features in the model, including speed, 

propulsive features were maintained as important contributors to the variation in 

sustained load. This was evident by the association of the trailing limb knee joint 

absorption power with the KAM sustained load (p = 0.023) and the hip joint propulsive 

power associated with the vGRF sustained load (p = 0.068). For ITTAs who have 

limited propulsive capacity from the ankle joint, the results from the current study 

provide an optimal compensatory approach, by increasing propulsion from the knee 

and hip joints, to reduce vGRF and KAM sustained load. Additionally, while not 

significant, trailing limb joint coordination hip-ankle strategy to lower the CoM during 

single support (anti-phase strategy) tended to be an important contributor to reducing 

vGRF (p = 0.052) and KAM (p = 0.082) sustained load. This is consistent with the 
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trailing limb coordination mechanics required to lower vGRF loading rates. This 

suggest the importance of coordination of the trailing limb lower-limb joints prior to 

initial contact to both early and midstance loading in the leading limb. 

The movement features selected in this chapter were only able to explain 2% of the 

variance in the KAM loading rate. This denotes that other contributing features that 

were not selected must exist. It should be noted that the features included in this 

chapter represented the strongest bivariate correlations with KAM loading rate 

amongst the remaining movement features not chosen. It is typical to assess frontal 

plane knee motion when examining KAM, however, no significant correlations were 

found for KAM loading rate with the frontal plane knee angle at initial contact (r = -

0.21, p = 0.279) or ROM (r = 0.05, p = 0.817). This suggests that features beyond 

those discussed in this thesis may be important in explaining the variance in the KAM 

loading rate. These could include step width (Paquette et al., 2014, Anderson et al., 

2018), forward and lateral trunk flexion (Hunt et al., 2008, Simic et al., 2012), frontal 

plane mechanics at the ankle and hip joints (Chang et al., 2005, Astephen et al., 

2008), and internal rotation at all lower-limb joints (Astephen et al., 2008).  

A limitation of the current chapter is the small sample size (n ≤ 30). This could limit 

the power of the regression analysis where false negatives may have occurred. To 

increase the power of the analysis, the number of predictor features per dependent 

variable input into the regression model was reduced. Another possible limitation is 

the inclusion of all experimental groups in a single analysis as each group may not 

present with similar relationships; however, this was not apparent in this study. 

6.5. Conclusion 

The current study is the first to investigate the relationship between lead limb loading 

and underlying movement patterns when performing a step descent. Speed was not 

a key contributor in reducing lead limb loading during the initial loading response or 

sustained loading phases. By performing a TC strategy, vGRF and KAM loading rates 
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are lowered by reducing the knee joint absorption power. In-phase joint flexion 

coordination of the trailing limb when lowering the CoM may increase the percentage 

of total energy absorbed by the trailing limb and reduce that required by the leading 

limb. Joint coordination of the trailing limb is important for reducing both initial loading 

and sustained midstance loading. Lastly, increased propulsion from knee and hip 

joints in the trailing limb, consistent with a HC strategy, can be performed to reduce 

the magnitude of sustained load. Overall, to reduce initial loading a TC strategy 

should be utilised while a HC strategy should be utilised to reduce sustained load. 

Independent of the presence of amputation, the results from this chapter would 

suggest a TC strategy should be utilised to control initial loading of the leading limb 

for both ITTAs and controls. For ITTAs, rehabilitation or exercise protocols should 

focus on coordination of the trailing limb joints when lowering the CoM during single 

support to allow for in-phase flexion of the ankle and knee, while the hip extends. 

6.6. Further Work 

The results from the current chapter demonstrate that the joint mechanics, 

independent of speed, are important in the development of load during a step 

descent. However, this was determined based on covarying for different stepping 

speeds in which a TC strategy was performed at a slower pace. It is possible that the 

joint mechanics performed during a TC strategy cannot be enacted at higher stepping 

speeds and may, therefore, be a consequence of this approach. Further research 

utilising controlled stepping speed trials can investigate this theory. 

Chapters 4, 5, and 6 presented evidence to suggest that the trailing limb mechanics 

may have influenced initial lead limb loading. The ability of the intact limb to attenuate 

load without the possible influence from the prosthetic limb or horizontal momentum 

requirements needs to be assessed. This could provide information regarding 

inherent deficiencies in the intact limb and mechanics performed to reduce load. This 

will be assessed in Chapter 7 & 8. 
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Chapter 7.  

Mechanics of unilateral drop 

landings in the intact limb of 

amputees 

 

7.1. Introduction 

Previous research on individuals with a transtibial amputation (ITTAs) has suggested 

that the mechanics of the prosthetic limb may influence the intact limb mechanics, 

and subsequently the magnitude and rate of load experienced in walking (Morgenroth 

et al., 2011, Grabowski & D’Andrea, 2013), running (McGowan et al., 2012, Strike et 

al., 2018), step negotiation (Chapter 5), and start-stop tasks (Haber et al., 2018). This 

is postulated to result from the inability of the prosthesis to generate the propulsion 

required to continue forward progression (Morgenroth et al., 2011) or, in jump 

landings, from inadequate absorption of high forces through the prosthesis 

(Schoeman et al., 2013). These interactions between the prosthetic and intact limb 

may explain the altered shock absorption approach observed in the intact limb (i.e., 

reduced joint angles and powers) during the initial loading response phase of running, 

step/stair negotiation, and jump landing (Grabowski et al., 2010, Schmalz et al., 2007, 

Strike et al., 2018, Schoeman et al., 2013). Thus, the intact limb must perform greater 

work to either continue forward progression or arrest the lowering of the CoM 

(Donelan et al., 2002a), which results in high load compared to the prosthetic limb 

(Sanderson & Martin, 1997). However, no research has assessed the shock 
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absorption approach of the intact limb to attenuate load without the influence of the 

prosthetic limb and the requirement to continue forward progression. This could 

provide an indication of deficiencies in the intact limb following amputation, which may 

be useful for informing rehabilitation protocols. 

A unilateral drop landing onto the intact limb can be used to further examine joint 

mechanics and load attenuation in response to a consistent vertical momentum. 

Reducing vertical momentum is required in many types of movement tasks such as 

walking, running, and jump landings, and is slowed through joint flexion and eccentric 

work to efficiently absorb rapid impact forces. Deficiencies in muscle strength of the 

knee extensors may also play a role in load attenuation. Decreased maximum muscle 

strength (maximum force/torque production) has been identified as one of the most 

frequent factors accompanying degenerative loading diseases (Petterson et al., 

2008) and has been suggested as an indication of increased limb loading (Egloff et 

al., 2012, Lloyd et al., 2010). Reduced eccentric work from the quadriceps muscles 

can result in the impact forces being absorbed by the surrounding tissue structures, 

such as cartilage and ligaments (Yeow et al., 2009b). Furthermore, frontal plane knee 

valgus motion can be increased 3-fold from decreased quadriceps muscle force 

(Hewett et al., 2005, Markolf et al., 1978) which has been identified as a risk factor 

associated with joint degeneration (Miyazaki et al., 2002). Increasing trunk flexion 

when landing has been found as a compensatory strategy to reduce the reliance on 

the eccentric contraction of the quadriceps. Greater trunk flexion is related to greater 

flexion at all lower-limb joints when landing from a jump which could aid in reducing 

knee joint loading (Blackburn & Padua, 2008, Blackburn & Padua, 2009). Substantial 

deficits in quadriceps muscle strength of 30-39% have previously been reported in 

the intact limb of ITTAs compared to able-bodied individuals (Lloyd et al., 2010, 

Pedrinelli et al., 2002); however, it is currently unknown how the intact limb may 

accommodate for decreased quadriceps strength when landing. 
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When landing from a jump, the time to develop muscular force to control joint motion 

is limited. Generation of rapid muscle force (i.e. explosive strength) has been shown 

to be important for re-stabilisation of the lower-limb joints following mechanical 

perturbations (Tillin et al., 2013, Andersen & Aagaard, 2006, Aagaard et al., 2002). 

The inability to stabilise and prevent rapid flexion of the knee joint during jump 

landings can lead to various acute and repetitive knee overloading injuries, e.g 

osteoarthritis and non-specific knee pain (Aerts et al., 2013). Explosive strength has 

not been examined in the intact limb of ITTAs yet could provide important information 

on the ability to initially stabilise the joint upon landing. 

A study assessing bilateral jump landings (Schoeman et al., 2013) found that the 

intact limb of ITTAs underwent a smaller ROM at all lower-limb joints compared to the 

control population and experienced significantly greater peak vGRF (Intact limb: 

25.25 ± 4.89 N/kg; Control: 22.34 ± 9.69 N/kg). This suggests that ITTAs utilise a 

more extended landing strategy in the intact limb. However, the ITTA study assessed 

a bilateral landing, thus, the restricted mechanics from the prosthesis could have 

influenced the results. Previous research has found that a more extended landing 

strategy is related to greater peak vGRF (Aerts et al., 2013). This strategy has been 

characterised by reduced joint flexion angles at touchdown, smaller range of motion 

(ROM) at each joint during load absorption, and increased joint angular velocities 

(Boling et al., 2009, Bisseling et al., 2008, Edwards et al., 2010, Louw et al., 2006, 

Bisseling et al., 2007). Previous research has consistently found the discrete 

movement features associated with more extended landing strategies (e.g., joint 

flexion, ROM, power, work) to be significantly related to various loading features 

(Yeow et al., 2009b, Tsai et al., 2017, Astephen & Deluzio, 2005) and significantly 

different between individuals with knee joint injuries (Aerts et al., 2013, Hewett et al., 

2005, Boling et al., 2009, DeVita & Skelly, 1992) compared to controls. Those 

individuals who perform a more extended landing strategy also utilise a different joint 
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absorption approach as measured by joint power and work (DeVita & Skelly, 1992, 

Zhang et al., 2000). While the knee joint is a consistent contributor to dissipating the 

kinetic energy at touchdown, the percentage contribution of the ankle and hip joint 

work completed can shift to a more dominant ankle absorption strategy as the degree 

of knee flexion during landing decreases (Zhang et al., 2000, Norcross et al., 2013, 

DeVita & Skelly, 1992). Additionally, a more extended landing can reduce the duration 

of the absorption phase thus less work can be completed to dissipate impact forces. 

DeVita & Skelly (1992) found that a more extended landing absorbed 19% less total 

joint work suggesting that the kinetic energy was dissipated through other joint 

tissues, rather than through the large muscle groups, placing these individuals at a 

greater risk of tissue degeneration. These studies indicate that specific coordination 

strategies of the lower-limb joints, i.e. the relative motion between joints, may be 

related to the load experienced. It is possible that without the influence from the 

prosthetic limb, the intact limb may be able to adopt a more flexed landing strategy 

thereby reducing peak loads experienced.  

In ITTAs, the intact limb is at a greater risk of experiencing knee pain, subsequent 

joint degeneration, and the development of comorbidities when compared to the 

prosthetic limb and the general population (Struyf et al., 2009, Norvell et al., 2005, 

Griffin & Guilak, 2005). The pathogenesis of joint degeneration is thought to stem 

from repetitive overloading in a limb (Arokoski et al., 2000), however, only one study 

has been conducted on landings in the ITTA population (Schoeman et al., 2013) 

where only the peak vertical ground reaction force (vGRF) was assessed. Research 

assessing overloading injuries has examined various discrete features within the GRF 

(Esposito & Wilken, 2014), knee joint moment (Morgenroth et al., 2014, Vanwanseele 

et al., 2010), and knee intersegmental force (Silverman & Neptune, 2014, Fey & 

Neptune, 2012) waveforms. There is no clear consensus on the most appropriate 

reduction of these loading waveforms to assess overloading associated with joint 
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degeneration in the ITTA population. Statistical parametric mapping is an approach 

which analyses a waveform in its original temporal-spatial format (Pataky, 2012) to 

remove the bias from an a priori approach when assessing limb or joint loading.  

The purpose of this study was, therefore, to investigate limb and knee joint loading in 

the intact limb of ITTAs compared to able-bodied controls during a unilateral drop 

landing, independent of prosthetic limb interactions and the requirement of forward 

progression; and assess the mechanisms underpinning any differences, including 

quadriceps maximal and explosive strength and joint absorption mechanics. It is 

hypothesised that, compared to the control limb, the intact limb will 1) present with 

reduced quadriceps muscular strength and explosive strength, 2) experience a 

greater magnitude of load at the ground and at the knee joint throughout the 

absorption phase, and 3) perform altered joint mechanics in the sagittal plane for the 

ankle, knee, and hip joints (angles at touchdown, peak powers, and ROM, joint work, 

and joint coordination patterns throughout the absorption phase) and altered trunk 

flexion and knee joint valgus motion. 

7.2. Methods 

A comprehensive outline of the data collection procedures for drop landing can be 

found in Chapter 3 Section 3.4.5. Data processing for biomechanics data were 

completed as outlined in Chapter 3 Section 3.5. . One control participant was 

excluded from the analysis due to hip marker occlusion issues.  

All strength and biomechanical features were extracted from the intact limb of ITTAs 

(n = 8) and the dominant control limb (n = 21). Dominance was defined as the limb 

that was chosen first to complete a unilateral landing. 

7.2.1. Strength Data Collection  

7.2.1.1.  Equipment 

Quadriceps isometric strength data were collected using an isokinetic dynamometer 
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(Humac Norm, Computer Sports Medicine Inc., Massachusetts, USA). The knee joint 

angle was set so that the angle during active maximal extension was 110° and the 

hip angle was set to 100° (full extension = 180°). Adjustable straps across the pelvis 

and shoulders were tightened to ensure no extraneous movement. The torque signal 

was sampled at 2000 Hz using an external A/D converter (16-bit signal recording 

resolution; Micro 1401, CED, Cambridge, UK) and interfaced with a PC using Spike 

2 software (version 8; CED). All torque data were low-pass filtered using a fourth-

order Butterworth filter with a cut-off frequency of 10 Hz, and were corrected for the 

weight of the limb by subtracting baseline resting torque.  

7.2.1.2.  Protocol 

Participants performed a series of warm-up contractions of increasing torque values 

for 2-3 minutes. Following the warm-up, three maximal voluntary isometric 

contractions lasting ~3 s each were performed with a ~45 s rest in between each 

attempt. Additional attempts were required if peak force continued to increase with 

each subsequent effort. The only instruction provided was to ‘push as hard as 

possible’ and strong verbal encouragement was given throughout the contraction to 

encourage maximal effort. Real-time biofeedback of the torque-time curve and the 

peak torques achieved in each contraction were provided on a computer monitor in 

front of the participants. Maximum voluntary torque (MVT, considered a measure of 

maximum strength) was determined as the greatest peak torque recorded during any 

maximal or explosive contractions (see below), and normalised to body mass. 

Explosive strength contractions were performed separate to the maximal 

contractions. Sahaly et al. (2001) and Dirnberger et al. (2016) examined the influence 

of instruction and the task goal on the measured outcome of explosive strength. They 

suggested that an emphasis on ‘fast’ during instruction without the concern for 

achieving maximal force production resulted in greater and more reliable explosive 

strength measures. Participants completed 10 explosive isometric contractions each 
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separated by ~20 s rest. Participants were instructed to ‘push as fast and as hard as 

possible’ for ~1 s, with an emphasis on ‘fast’ and aimed to achieve a minimum of 80% 

of MVT as quickly as possible. Real-time biofeedback was again provided to denote 

the participant’s best explosive performance; the peak rate of torque development 

(RTD) was highlighted from the slope of the torque-time curve (15 ms time constant). 

Peak RTD calculations do not require detection of onset or peak torque and is 

calculated continuously prior to, during, and after each explosive contraction. The 

peak slope is then extracted as the measure of peak RTD. Resting torque was 

additionally monitored to ensure that no countermovement or pre-tension occurred 

before the contraction which could influence the ability to generate rapid force. Peak 

RTD was averaged from the three explosive voluntary contractions with the highest 

peak RTD’s (Folland et al., 2014) and expressed relative to body mass. 

7.2.2. Biomechanical Features Extracted 

The loading waveforms analysed are detailed in Chapter 3 Section 3.6.1. In brief, the 

3-dimensions of the ground reaction forces (GRF), knee moments (KM), and 

intersegmental knee forces (KF) were extracted for the duration of the absorption 

phase. The absorption phase was defined from touchdown, based on a 20N threshold 

in the vGRF through to maximal knee flexion in the limb of interest (i.e. intact limb of 

ITTAs and control limb). The duration of the absorption phase was calculated in 

seconds as a measure of the time taken to absorb the impact forces from landing.  

Discrete movement features were extracted from the sagittal plane ankle, knee, and 

hip joints including touchdown angles, ROM, peak absorption powers, and negative 

joint work (see Figure D2.1 in Appendix D2). ROM was determined as the difference 

from minimal to maximal flexion during the absorption phase. Trunk flexion angle at 

touchdown and ROM was additionally extracted. This ROM was calculated based on 

angular change of the vector defined by the shoulder and anterior superior iliac spine 

markers and the vertical axis from touchdown to the end of the absorption phase. 
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Negative joint work was calculated as the area under the negative portion of the 

power-time curve using the trapezoidal rule for the duration of the absorption phase. 

Joint coordination was represented by coupling angles for the ankle-knee, knee-hip, 

and hip-ankle joint pairs. Coupling angles were calculated as the average value from 

touchdown to peak vGRF to assess the initial loading coupling strategy. The average 

value for coupling angles was deemed appropriate due to the relatively flat waveform 

prior to any issues associated with values around 0°/360° (Hughes & Watkins, 2008). 

See Chapter 3 Section 3.6.4.1 for coupling angle waveforms and discussion on its’ 

reduction to the average discrete feature. Lastly, in the frontal plane, the knee joint 

touchdown angle and ROM were extracted. 

7.2.3. Statistical Analysis 

To assess differences between the intact and control limbs, independent t-tests were 

performed for strength, loading, and movement features. Loading waveforms were 

assessed using statistical parametric mapping (see Chapter 2 Section 2.7.  and 

Chapter 3 Section 3.6.2). Landmark registration was not applied in this chapter due 

to the relatively short phase of landing which could result in over-registration. 

7.3. Results 

No significant differences were found between groups for age, height, or mass, 

although there was a tendency for ITTAs to be older than controls (Table 7.1). 

Average drop landing heights for both groups was 30.7 ± 3.4 cm and was not 

significantly different between groups. The duration of the absorption phase was also 

similar between groups. 

 

 

 

 



Chapter 7: Unilateral Drop Landings
 

143 

 

Table 7.1. Participant demographics and whole-body features (mean ± 
SD) for the intact limb of ITTAs and dominant control limbs 

 ITTA Control p-value 

Age (years)   40.0 ± 9.0  34.0 ± 6.5 0.064 

Mass (kg)  84.5 ± 18 83.4 ± 11 0.769 

Height (cm)   177 ± 7.4   179 ± 6.2 0.400 

Drop Height (cm)  31.6 ± 3.4 30.4 ± 3.4 0.170 

Absorption Duration (s)    0.21 ± 0.04   0.20 ± 0.13 0.798 

 

7.3.1. Strength Differences 

Table 7.2 presents the isometric strength features for both groups. There were no 

significant differences between the intact and control limbs for isometric MVT or peak 

RTD, although the intact limb had ~20-25% lower MVT and peak RTD. 

Table 7.2. Maximal voluntary isometric torque (MVT) and peak rate of 
torque development (RTD) mean ± SD for the intact limb of ITTAs and 
dominant control limb 

 Intact Limb Control Limb p-value 

MVT (Nm/kg)  2.29 ± 1.2 2.79 ± 0.6 0.134 

Peak RTD (Nm/kg/s)  19.6 ± 9.9 25.3 ± 6.7 0.084 

 

7.3.2. Loading Differences 

Figure 7.1 presents the loading waveforms for the duration of the absorption phase 

in the control limb (solid black line) and the intact limb of ITTAs (dashed red line). No 

significant differences were present between groups for any loading waveform. 
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7.3.3. Movement Differences 

The intact and control limbs did not differ significantly at any lower-limb joints or at 

the trunk for the touchdown angles (p ≥ 0.312) or ROM (p ≥ 0.339) in the sagittal and 

frontal planes (Figure 7.2A). Joint coordination strategies were not significantly 

different between groups for any lower-limb joint pair (p ≥ 0.385; Figure 7.2B). Peak 

negative absorption powers were also not significantly different between groups at 

any joint (p ≥ 0.318; Figure 7.2C). 

 

 

 

Figure 7.1. Each row presents the 3-dimensional loading waveforms for the A) GRFs, B) knee 
moments, and C) intersegmental knee forces (KF) in the intact limb (IL; red dashed) and 
dominant-control limb (DCL; black solid). Loading waveforms are presented for the duration of 
the absorption phase. 

GRFx = lateral-medial, GRFy = anterior-posterior, vGRF = vertical, external knee flexor 
moment (KFM) = flexor-extensor, external knee adduction moment (KAM) = adduction-
abduction, external rotational knee moment (KMz) = internal-external, KFx = anterior-posterior, 
KFy = lateral-medial, and KFz = compression 
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The individual joint work completed (Figure 7.3A) was not significantly different 

between groups at the ankle (p = .950; Intact limb: -1.23 ± 0.35 J/kg, Control limb: -

1.22 ± 0.28 J/kg), knee (p = .457; Intact limb: -0.57 ± 0.28 J/kg, Control limb: -0.67 ± 

0.36 J/kg) or hip joints (p = .406; Intact limb: -0.34 ± 0.25 J/kg, Control limb: -0.27 ± 

0.20 J/kg). Both the intact and control limbs utilised the ankle joint as the primary joint 

to perform the negative work to reduce the momentum of the CoM (56-58%; Figure 

7.3B). 

 

 

 

 

 

 

Figure 7.2. A) Joint angular position at touchdown (TD) and joint range of motion (ROM) in 
the sagittal and frontal plane, B) joint coordination coupling angle for the ankle-knee (AK), 
knee-hip (KH) and hip-ankle (HA), and C) peak joint absorption powers when landing at the 
ankle, knee, and hip joints in the intact limb (IL) and dominant control limb (DCL). 
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7.3.4. Waveform Variability Sub-Analysis  

As noted in Figure 7.1, there was a large standard deviation in the loading features, 

specifically the vGRF and KAM, for both ITTAs and controls. This chapter postulated 

that a reduction in quadriceps strength or differences in the joint shock absorption 

approach of the intact limb would indicate between-group differences when all other 

influences were considered (i.e. landing height, prosthetic limb, forward progression). 

As no significant differences were found, the variance in the development of the vGRF 

and KAM loading waveforms are not explained by the absence or presence of an 

amputation. Thus, this sub-analysis aimed to examine the source of the variability 

and the underpinning mechanics that may have influenced the development of load. 

7.3.4.1.  vGRF 

Upon investigation, the vGRF waveform patterns suggested a variation in the timing 

to peak magnitude (Figure 7.4; Ortega et al., 2010). These two patterns were evident 

Figure 7.3. A) Individual joint work and B) joint percentage contribution of the total negative joint 
work performed in the ankle, knee, and hip joints for the intact limb (IL) and dominant control 
limb (DCL) during the absorption phase of landing 
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in both the controls and ITTAs suggesting that the pattern chosen was not group 

specific. To explore the variation, the ITTA and control data were combined (n = 29) 

and further split into two new groups based on the percentage of time to peak vGRF 

relative to the duration of the absorption phase. This approach was taken as the 

waveform analysis was conducted on time-normalised data. The average time to 

peak vGRF (46 ± 13%) was calculated and those participants with values above the 

average were deemed the ‘late’ group whilst those with values below the average 

were in the ‘early’ group (Table 7.3). Appendix F1 evaluates the group classification 

based on the time to peak vGRF as a percentage of the absorption phase (T%) 

compared to classifying based on the time to peak vGRF in seconds (Ts). Seven 

participants differed indicating a classification error of 24% using the T% to separate 

early and late groups. One participant differed due to an over-manipulation of the 

time-domain when linearly time-normalising the loading waveforms despite taking 

precautions to avoid this issue (i.e. time-normalising to the average length of the 

absorption phase across all participants). After removal of the outlier, the 

classification error reduced to 21%. The remaining six participants who differed 

between classification approaches had values within 0.01 s of the mean Ts and 13% 

from the T% mean across all participants indicating a middle peak group (Figure 

F1.1). These participants were removed from further analysis to ensure that 

comparisons were made on divergent groups (total left: n = 22). 
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It can be seen in Figure 7.4 that much of the variability in the waveform could be 

explained by the variance in the time to peak magnitude. Both the T% (p < 0.001) and 

the Ts (p = 0.034) were significantly different between groups (Table 7.3). As there 

was a difference in the time to peak, waveform analysis did not directly compare peak 

magnitudes. Peak vGRF was found to be significantly higher in the early group (p = 

0.005). Group composition consisted of equivalent numbers of controls and ITTAs, 

relative to their independent group size, in each group confirming that the variance in 

the vGRF waveform was not group specific (Table 7.3). The presence or absence of 

the first impact transient peak (see Figure F1.2 in Appendix F1) in each group was 

also identified. Impact peaks are caused by a brief inertial change of the body typically 

thought to occur due to the mechanics of the ankle joint (Hunt et al., 2010, Addison 

& Lieberman, 2015). According to Table 7.3, 83% of the participants in the early group 

had impact peaks present while an impact peak occurred in only 50% of the 

participants in the late group. Differences in the joint mechanics between groups may 

Figure 7.4. vGRF waveforms for participants with a longer time to peak 
magnitude (dashed line) and shorter time to peak magnitude (solid line) 
based on splitting the dataset by the time to peak vGRF as a percentage 
of the absorption phase. ITTA and control participants are present in both 
groups.  
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explain the presence or absence of the impact peak and is explored below. Lastly, it 

was of interest to examine the control participant group composition in the early and 

late groupings compared to the group compositions in chapter 4 that was based on 

the initial contact step descent strategy. This could suggest that certain shock 

absorption mechanics are maintained across movement tasks, however, this was not 

present.   

Table 7.3. Early and late group temporal features and group composition 
characteristics 

 Early (n = 12) Late (n = 10) 

Time to Peak (%)      37.6 ± 6.7**       57.8 ± 8.3 

Time to Peak (s)  0.07 ± 0.01** 0.09 ± 0.01 

Absorption Duration (s) 0.20 ± 0.05* 0.17 ± 0.02 

Peak vGRF (N/kg)      41.3 ± 7.1*       33.4 ± 3.9 

Group Composition   

Controls Present 9 8 

ITTAs Present 3 2 

Impact Peak Present 10 5 

Step Descent: Control Heel Contact 4 5 

Step Descent: Control Toe Contact 5 3 

*p < 0.05, **p < 0.001 

Comparison of the data in the new groupings found significant differences in the KFx 

and KFz loading waveforms (p ≤ 0.018; in addition to the vGRF) and mechanics of 

the trunk and at the knee and hip joints (p ≤ 0.045). Differences in the loading 

waveforms (vGRF, KFx, and KFz) occurred from ~32-38% (p ≤ 0.038) and ~54-75% 

(p < 0.001) representing the phases in which peak magnitude occurred in the early 

and late groups, respectively. Those participants in the late group also had longer 
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times to peak magnitude in seconds in the KFx and KFz waveforms suggesting that 

the timing to peak is similar across multiple planes of motion.  

 

Significant differences were present in the joint mechanics indicating that the shock 

absorption approaches could, at least in part, explain the variance in vGRF (Figure 

7.5 & Figure 7.6). No significant differences were found in the strength features (MVT 

and peak RTD; p ≥ 0.660). The late group exhibited significantly greater ankle 

plantarflexion angle at touchdown (p = 0.041) and significantly reduced hip ROM (p 

= 0.030) and trunk ROM (p = 0.020); significantly less peak joint absorption power at 

the knee (p = 0.005) and hip (p = 0.026) joints; significantly greater work done at the 

ankle joint (p = 0.012); and significantly less work at the knee (p = 0.038) and hip (p 

= 0.020) joints. Additionally, joint coordination for the ankle-knee (p = 0.002) and hip-

ankle (p = 0.001) joint pairs were significantly different between groups. The late 

group performed an ankle dominant-strategy with less utilisation of the knee and hip 

joints to absorb the load through the limb. These results possibly stem from the late 

Figure 7.5. Early (grey) and late (black) groups A) Joint angular positions at touchdown (TD) 
and joint range of motion (ROM) in the sagittal and frontal plane, B) joint coordination coupling 
angle for the ankle-knee (AK), knee-hip (KH) and hip-ankle (HA), and C) peak joint absorption 
powers when landing at the ankle, knee, and hip joints. 
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group spending a shorter amount of time in the absorption phase (p = 0.028; Figure 

F1.2 in Appendix F1).  

 

Ortega et al. (2010), assessing vertical jump landings, found similar results to that of 

the current sub-analysis in which a longer time to peak vGRF was significantly related 

to a reduced duration of the absorption phase (r = -0.44, p = 0.014) and a smaller 

peak vGRF (r = -0.41, p = 0.026). It was suggested that increasing the time to peak 

vGRF was optimal in reducing the risk of injury (by lowering the rate at which load is 

developed) while making the jump landing faster which is an important aspect of sport 

performance. The study, however, did not assess any joint mechanics and differs 

from other research (DeVita & Skelly, 1992, Zhang et al., 2000) which suggests that 

with a reduced absorption phase duration, a more extended landing strategy is 

performed and is associated with increased peak forces. The results from the current 

study demonstrate that with reduced landing duration, as exhibited by the late group, 

Figure 7.6. Early and late group A) individual joint work and B) joint percentage contribution 
of the total negative joint work performed in the ankle, knee, and hip joints during the 
absorption phase. 
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a more extended landing strategy is performed (Figure 7.5 and Figure 7.6) yet elicits 

a lower peak vGRF (and possibly loading rate; Figure 7.4). 

7.3.4.2.  KAM 

KAM is a commonly assessed loading feature that has been related to the onset and 

progression of joint degeneration (Zhao et al., 2007, Vanwanseele et al., 2010, 

Morgenroth et al., 2014). Therefore, the variability present in the KAM waveform 

(Figure 7.1B) was also examined. Figure 7.7A presents the combined ITTA and 

control KAM waveform dataset split into the early and late groupings defined by the 

time to peak vGRF (T%) as above. It can be seen that at least some of the variability 

in KAM can be explained by the variability in the time to peak vGRF suggesting that 

the time to peak KAM occurs at a similar time to the peak vGRF. However, there is 

still variability present specifically from ~25-50% of the absorption phase when the 

second peak in the KAM waveform occurred. Therefore, the time to peak KAM as a 

percentage of the absorption phase was calculated to split the combined ITTA and 

control dataset into new groupings. For the earlyk group (n = 10), peak KAM occurred 

at 41 ± 8.3% of the absorption phase while the latek group (n = 12) peak KAM 

occurred at 70 ± 12% (p < 0.001). The time to peak in seconds was also significantly 

different (p < 0.001; latek: 0.12 ± 0.01 s, earlyk: 0.08 ± 0.01 s). The time to peak KAM 

groupings reduced the variability further (Figure 7.7B). This suggests that the joint 

mechanics may have additionally influenced the development of KAM. In comparison 

of the participant classifications between the time to peak vGRF (Figure 7.7A) and 

the time to peak KAM (Figure 7.7B), only two participants differed indicating a 

classification error of 9.1%. Thus, as expected, differences in joint mechanics 

between the KAM earlyk and latek groups were similar to that of the vGRF early and 

late groups. This indicates that the performance of a more extended landing strategy, 

by utilising the ankle joint to absorb the rapid impact forces, could additionally lower 

the rate of KAM. 
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7.3.4.3.  Stepwise Regression 

Dynamic limb and joint loading is thought to be a significant risk factor in the 

development of injury. While movement features associated with a more extended 

landing strategy have been suggested as important risk factors, the relative 

importance of these features in relation to load have received limited attention. The 

above sub-analysis has suggested that a more extended landing strategy may 

actually lower vGRF and KAM loading rates. To determine the movement features 

that best explain the variance in the time to peak vGRF and KAM, stepwise 

regressions were performed with the average loading rates as the independent 

variables and movement and strength features as predictor variables. Average 

loading rates were calculated by dividing the peak magnitude by the time to peak. 

The combined dataset of all participants (n = 29) was input into the model as both 

ITTAs and controls were present in both early and late groups. To maintain power 

and avoid overfitting the data in the regression analysis (Peduzzi et al., 1996), <15 

movement features in total were selected from the data presented in Chapter 7 (29 

participants/2 = 14.5 predictor maximum; Austin & Steyerberg, 2015). To account for 

Figure 7.7. KAM waveforms (mean and SD cloud) for participants with a longer time to peak 
magnitude (dashed line) and shorter time to peak magnitude (solid line) based on splitting the 
dataset by the A) time to peak vGRF and B) time to peak KAM as a percentage of the absorption 
phase. TTA and control participants are present in both groups. 
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any multicollinearity (Alın et al., 2009), variance inflation factors were calculated. The 

variance inflation factors provide an overall idea of the correlation between all 

features that could be included in the regression model. The discrete movement 

features included in the regression model had variance inflation factors of less than 

10 (O’brien, 2007). See Table F2.1 in Appendix F2 for results of this analysis and 

discussion on the final features chosen for the model. The movement predictor 

features input into the final model included the joint angles at touchdown, absolute 

joint peak absorption powers, joint-pair coupling angles, frontal plane knee joint angle 

at touchdown and ROM, and MVT. All data were z-score normalised prior to input 

into the regression analyses to provide standardised beta-coefficients. 

Three predictors in each model were able to explain 71% and 95% of the variance in 

the vGRF and KAM average loading rates, respectively (Table 7.4). The ankle and 

knee angles at touchdown and hip joint peak absorption power were significant 

predictors in explaining the variance in the vGRF loading rate. 91% of the variance in 

KAM loading rate was explained by the knee joint peak absorption power. The ankle 

and hip angles at touchdown were able to explain an additional 2% each. These 

findings demonstrate that when performing a unilateral drop landing with reduced 

ankle plantarflexion at touchdown, increased knee and hip flexion angles at 

touchdown, and greater peak knee and hip absorption powers, the limb and joint 

loading rates are significantly higher. A more extended landing strategy efficiently 

lowers the rate at which vGRF and KAM are developed by utilising the ankle joint as 

the primary shock absorber. 
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Table 7.4. Stepwise linear regression in the order added into the model. 
Values are denoted are the β-coefficient (standard error) with their 
respective adjusted R2 contribution to the total adjusted R2. 

 vGRF Loading Rate 

 Full Model: Adj. R2 = 0.71, p < 0.001 

 β-coefficient p-value Adj. R2 

Ankle Angle @ TD  0.81 (0.12) < 0.001 0.40 

Hip Power  0.60 (0.11) < 0.001 0.26 

Knee Angle @ TD -0.29 (0.12)    0.026 0.05 

  

 KAM Loading Rate 

 Full Model: Adj. R2 = 0.95, p < 0.001 

Knee Power 0.83 (0.05) < 0.001 0.91 

Ankle Angle @ TD 0.19 (0.05) < 0.001 0.02 

Hip Angle @ TD -0.17 (0.05)    0.002 0.02 

 

7.4. Discussion 

By examining a unilateral drop landing, this study investigated the limb and knee joint 

loading in the intact limb and the mechanisms utilised to attenuate this load without 

the influence of the prosthetic limb or task demands. The main finding of this study 

was that there were no significant differences between groups for the strength 

features, the joint mechanics utilised to absorb the impact from landing or in the load 

experienced at the ground or at the knee joint. These results provide evidence to 

suggest that overloading in the intact limb found in other studies and tasks (e.g., 

walking, step negotiation) is most likely due to the influence of the mechanics from 

the prosthetic limb or due to the task demands. This suggests that ITTAs are not at a 

greater risk of injury in the intact limb when performing a unilateral landing from a 
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drop height of 30 cm.  

MVT was 20% and peak RTD was 25% lower in the intact limb of ITTAs compared to 

controls. The MVT deficits are smaller than those found in other ITTA studies which 

have indicated that the intact limb produces 30-39% less maximum strength than an 

able-bodied control (Lloyd et al., 2010, Pedrinelli et al., 2002). Further, MVT was 

higher in the current study compared to other ITTA studies (2.29 Nm/kg vs 0.85 

Nm/kg). However, these studies included individuals whose amputation occurred due 

to vascular diseases, thus, the greater deficiencies in muscular strength may be due 

to the effects of the disease that are not present in traumatic amputations. These 

studies also made no reference to the activity level of their participants and Pedrinelli 

et al. (2002) included participants who used walking aids (20% of total participants). 

Those participants included in the current chapter were recreationally active 

(participation in sport or exercise a minimum of 2 days a week) which may have 

attributed to the lower percentage deficits. In comparison to previous research, MVT 

measured in the current study for able-bodied individuals was consistent with 

participants in other studies with the same activity level.  

Past research has found negative correlations between quadriceps strength and peak 

vGRF in quadriceps inhibition (Palmieri-Smith et al., 2007) and anterior cruciate 

ligament injury jump landing studies (Ward et al., 2018) when landing from a height 

of 30 cm. Additionally, it is well known that quadriceps weakness is associated with 

joint degenerative diseases where strength deficits from 15-18% may be present prior 

to disease development (Slemenda et al., 1997, Segal & Glass, 2011). Previous 

research has suggested that isometric MVT deficits in the quadriceps of greater than 

15% can negatively impact the loading patterns and alter the joint mechanics when 

landing from a jump (Schmitt et al., 2015). This can result in the absorption of impact 

forces by the tissue structures rather than by the bigger muscle groups, increasing 

the incidence of developing degenerative diseases (Yeow et al., 2009b, DeVita & 
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Skelly, 1992). However, the current study found no differences in loading patterns 

between groups suggesting that the strength deficits did not influence the magnitude 

or rate of load experienced. 

As far as the authors are aware, the current study is the first to assess explosive 

strength in the intact limb of ITTAs. Previous research has found that greater RTD 

can aid in dynamic balance recovery (Behan et al., 2018), such as that seen in 

sporting movements, by rapid stabilisation of the lower-limb joints. Without 

stabilisation, the joints could move into injurious positions (e.g. reduced knee joint 

flexion) placing the load demand onto the cartilage (Winters & Rudolph, 2014). 

However, in the current study, the intact limb did not exhibit significantly different 

lower-limb motion, coordination patterns, or a shift in the shock absorption approach 

as both groups completed the majority of energy absorption in the ankle joint (56-

58%). As the ITTA population in the current study did not experience greater limb or 

joint load, it is possible that both groups had sufficient quadriceps strength and were 

able to rapidly produce muscle strength that allowed an adequate degree of joint 

flexion to attenuate the load during landing (Palmieri-Smith et al., 2007).  

Reduced quadriceps strength can be compensated for through a number of 

mechanisms including frontal plane knee valgus motion (Palmieri-Smith et al., 2008) 

and trunk flexion (Hughes, 2014). The current study, however, found no significant 

differences in the frontal plane knee motion or the sagittal plane trunk and knee 

flexion. These results differ from previous research. Goerger et al. (2015) suggested 

that when vGRF is similar, frontal plane motion may be altered as a possible 

compensation to absorb load when deficits in quadriceps strength are present. This 

was also reported by Palmieri-Smith et al. (2008) in which reduced quadriceps 

prepatory activation prior to touchdown was associated with increased peak knee 

valgus angles. Healthy participants, who landed with greater peak trunk flexion, had 

a reduced quadriceps activity and landing forces suggesting a reduced reliance on 
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the eccentric contraction of the quadriceps to attenuate load (Blackburn & Padua, 

2009). Greater active trunk flexion during landing is also associated with a more 

flexed strategy at the knee and hip joints (Blackburn & Padua, 2008) potentially 

contributing to the reduced landing forces. That there were no significant differences 

between ITTAs and controls in the current study, suggests that the 20% deficit in 

quadriceps maximal strength and 25% deficit in peak RTD did not elicit 

compensations in the landing mechanics. Additionally, these deficits did not impact 

the magnitude and rate of load experienced when landing from a drop height of 30 

cm. Further research could examine the landing height about which compensations 

may occur in response to reduced quadriceps strength.  

Both groups performed an ankle dominant joint absorption approach when landing 

(Figure 7.3). Greater utilisation of the ankle joint to attenuate load has been found to 

be associated with increases in peak vGRF, KFM, and anterior KFx magnitudes 

(DeVita & Skelly, 1992, Zhang et al., 2000, Norcross et al., 2010). Healthy individuals 

who performed a more extended landing strategy at all joints utilised the ankle joint 

to perform ~50% of the total joint work (DeVita & Skelly, 1992, Zhang et al., 2000). 

Rowley & Richards (2015) determined that an optimal ankle plantarflexion angle at 

initial contact between 20-30° would limit the peak vGRF and vGRF loading rate when 

landing from a jump. Additionally, within this optimal plantarflexion range, the lower-

limb joints’ contribution relative to the support moment were found to be relatively 

equal (ankle, knee and hip joints between 30-40% of total). This suggests that in-

phase joint flexion coordination could potentially reduce load at the ground and at the 

knee joint by absorbing the load equally at the lower-limb joints (Hughes & Watkins, 

2008). The ITTA and control participants in the current study landed with an ‘optimal’ 

ankle plantarflexion angle. However, there was greater utilisation of the distal joints 

where 56-58% of the total joint work was completed by the ankle. In comparison to 

unilateral drop landing research, the joint mechanics were similar to that in the current 



Chapter 7: Unilateral Drop Landings
 

159 

 

study (Pappas et al., 2007b, Palmieri-Smith et al., 2007). It was suggested that a 

more extended landing strategy is performed in unilateral landings to maintain 

balance despite the greater risk of injury when utilising this approach (Pappas et al., 

2007b). It is also possible that the extended landing strategy was performed by ITTAs 

in this study to limit the eccentric work required from the quadriceps. Thus, a unilateral 

landing did not elicit greater joint flexion in the intact limb when the prosthetic limb 

contribution was absent. Single-limb balance and quadriceps strength training may 

enable the intact limb to adopt a more flexed landing strategy which could be 

important in reducing load in many sporting manoeuvres. 

Landing height has been shown to influence the landing joint mechanics as greater 

momentum is experienced as landing height increases (Seegmiller & McCaw, 2003, 

Yeow et al., 2009a, Yeow et al., 2010). Schoeman et al. (2013) found greater vGRF 

was experienced in the intact limb compared to the control limb. However, the ITTA 

group landed from a significantly lower jump height than the controls. This could 

suggest that the vGRF should have been significantly greater when ITTAs landed 

from the same height as the controls. However, the vGRF experienced in the intact 

limb in the current study was similar to the vGRF experienced in the intact limb of the 

Schoeman et al. (2013) study. This occurred despite landing from almost double the 

height (15 cm vs 30 cm). One possible reason is that the intact limb in the current 

study performed greater joint ROM compared to the intact limb of the ITTAs who 

landed from half the height (15 ± 6 cm). Further, the intact limb in the current study 

performed similar ROM at all lower-limb joints to the control group in the Schoeman 

et al. (2013) study who landed from the same height (31 cm). This shock absorption 

adaptation has been seen in able-bodied individuals who increase the joint flexion 

angles as the drop height increases thereby limiting the load experienced (Yeow et 

al., 2010). Therefore, the results from the current study suggest that ITTAs can adapt 

to the higher landing height and attenuate load without the influence from the 
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prosthetic limb by adopting shock absorption strategies similar to that of a control 

population. 

7.5. Conclusion 

The intact limb of ITTAs does not experience significantly different load and does not 

perform significantly different joint absorption mechanics compared to an able-bodied 

control, when landing on this limb from a drop height of 30 cm. This was despite 

deficits in the knee extensor isometric MVT and peak RTD in the intact limb that were 

greater than deficits that have previously indicated altered joint mechanics and 

loading patterns. It is therefore plausible that without the influence from the prosthetic 

limb or the requirement for continued forward progression, the intact limb of ITTAs 

can attenuate load when landing from a jump up to 30 cm in height similar to able-

bodied controls. The sub-analysis between early and late time to peak groups found 

two different strategies to attenuate limb and joint loading. A more extended landing 

strategy, by utilising the ankle joint as the primary shock absorber, was found to be a 

significant predictor in decreasing the initial rate of vGRF and KAM loading. Loading 

rates have been suggested as an important risk factor in the development of 

degenerative diseases. As the ITTAs who participated in the current study were 

recreationally active, this would suggest that inclusion of unilateral drop landings in 

rehabilitation and exercise programmes for less-active or non-established ITTAs 

could aid in the development of strength and coordination and increase participation 

in sport and exercise. 

7.6. Further Work 

Previous research in continuous movement tasks, such as walking, have postulated 

the possible influence of the prosthetic trailing limb on intact limb mechanics and 

loading. However, in discrete tasks which require synchronous joint flexion to 

attenuate load, such as jump landings, this influence has not been examined. As 

typical landing manoeuvres during exercise and sport are performed utilising both 
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limbs to attenuate load, further research is warranted to determine the influence of 

the prosthetic limb on the intact limbs’ shock absorption approach during a bilateral 

landing. This will be explored in the next chapter. 

To determine the viability of including unilateral drop landings in rehabilitation 

protocols for ITTAs, analysis of landings from different heights onto the intact limb 

should be performed. The height about which limb and joint load is minimised while 

stimulating muscle activation could be optimal for rehabilitation and increase 

participation in sport and exercise. This approach could additionally provide increases 

in stability and prevent falls in the amputee population.  
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Chapter 8.  

Mechanics of bilateral drop 

landings in the intact limb of 

amputees 

 

8.1. Introduction 

Individuals with transtibial amputations (ITTAs) are encouraged to participate in sport 

and exercise by health professionals as an active lifestyle can enhance psychological 

well-being and provide numerous health benefits. For example, it can decrease the 

likelihood of developing secondary conditions post-amputation such as 

cardiovascular disease, hypertension, and other various chronic conditions linked to 

sedentary lifestyles (Chapman, 2008, Sanderson & Martin, 1996). ITTAs may be 

discouraged from participating in sports involving jumping (e.g. volleyball, basketball) 

due to the perceived excessive magnitude of load experienced during landing 

(Bragaru et al., 2011, Deans et al., 2012). These sports are typically adapted to either 

sitting or wheelchair versions for ITTAs which reduces the impact loading on the 

lower-limbs, however, does not necessarily provide the exercise-related benefits that 

comes from standing participation. Repetitive high load on the lower-limb joints is 

thought to increase the risk of developing degenerative joint diseases, such as 

osteoarthritis, specifically in the intact limb of ITTAs (Norvell et al., 2005, Struyf et al., 

2009). However, there is limited research to suggest that the intact limb experiences 

a greater load and thereafter is at a greater risk of injury compared to able-bodied 
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controls when landing from a jump.  

Typical bilateral landings in sport and exercise require near synchronous joint flexion 

of both limbs to attenuate load. Eccentric control of the plantarflexors at the ankle joint 

is the first point of shock absorption that aids in effectively controlling the downward 

momentum of the centre of mass (CoM) (DeVita & Skelly, 1992). The prosthetic ankle 

joint has limited range of motion (ROM) and reduced shock absorption capabilities. 

This can result in experiencing excessive pressure at the socket-limb interface during 

a landing causing pain or skin breakdown (Klute & Berge, 2004, Dudek et al., 2005). 

When landing from a jump, ITTAs may perform a quasi-unilateral landing as a load-

avoidance strategy in the prosthetic limb or in response to the restricted mechanics 

of the prosthesis (Schoeman et al., 2013). As far as the authors are aware, only one 

study has assessed jump landings in ITTAs which depicted this quasi-unilateral 

landing strategy (Schoeman et al., 2013). This study found that the intact limb touched 

down earlier than the prosthetic limb (0.04 ± 0.02 s) and this difference in timing was 

significantly different to the control population, who landed with both feet almost 

simultaneously (0.01 ± 0.00 s). Thus, the intact limb was responsible for reducing a 

greater percentage of the total momentum than the prosthetic limb and the control 

limbs.  

Chapter 7, which assessed unilateral drop landings, presented evidence to suggest 

that the intact limb of ITTAs is capable of attenuating load from a landing height of up 

to 30 cm by adopting joint mechanics not significantly different to those of an able-

bodied control group when the influence of the prosthetic limb is absent. Schoeman 

et al. (2013) examined the performance of bilateral maximal jump landings in ITTAs. 

Significant differences were present in the load experienced and joint mechanics 

performed between the intact limb and an able-bodied control limb. This would 

suggest that a between-limb influence is present in discrete in-phase tasks such as 

landings. However, the differences found in the Schoeman et al. (2013) study may 
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also have been the result of differences in landing height. Landing height has been 

found in previous research to influence the magnitude and rate of limb and joint 

loading and the joint mechanics performed (Seegmiller & McCaw, 2003, Yeow et al., 

2009a, Yeow et al., 2010). Therefore, a bilateral drop landing will provide the most 

appropriate assessment of the influence from the prosthetic limb by determining 

differences in the shock absorption mechanics performed by the intact limb of ITTAs 

and able-bodied controls. 

Like ITTAs, other injury populations have also demonstrated an asymmetrical landing 

strategy with a greater reliance placed on the uninjured limb when landing from a 

jump. The uninjured/intact limb has been found to experience a significantly greater 

peak vGRF and higher vGRF loading rates compared to the injured/prosthetic limb 

which has been associated with an increased risk of knee injuries (Schmitt et al., 

2015, Goerger et al., 2015, Paterno et al., 2007, Schoeman et al., 2013). In addition, 

the intact limb may adopt movement strategies associated with increased risk of injury 

(i.e. more extended landing strategy) to absorb the greater percentage of the total 

momentum. A more extended landing strategy has been characterised by joint 

strategies including reduced joint flexion angles at touchdown, less joint flexion ROM 

during load absorption, greater knee valgus ROM, increased joint angular velocities, 

and reduced trunk flexion (Boling et al., 2009, Bisseling et al., 2008, Edwards et al., 

2010, Louw et al., 2006, Bisseling et al., 2007, Blackburn & Padua, 2009). The 

coordination strategies of the lower-limb joints have also been suggested to influence 

the force experienced by the limb when landing from a jump (Hughes & Watkins, 

2008, Zhang et al., 2000). Previous research and the results from Chapter 7 that have 

assessed the mechanics during unilateral drop landings, have found a more extended 

landing strategy is utilised in order to effectively control the rapid lowering of the CoM 

(Palmieri-Smith et al., 2007, Pappas et al., 2007b). It is possible that during a bilateral 

landing the intact limb will perform joint mechanics similar to those observed in a 
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unilateral drop landing. 

A greater understanding of the compensatory strategies adopted by the intact limb 

due to the prosthetic limb influence in landings could provide important information 

on the risk of participating in sports involving jumping for ITTAs. Thus, the purpose of 

this study was to determine the ability of the intact limb to attenuate load, when the 

possible influence of the prosthetic limb is present, by assessing the load experienced 

and the joint shock absorption mechanics performed during a bilateral drop landing 

compared to able-bodied controls. It is hypothesised that the intact limb, in 

comparison to a control limb, will 1) perform a quasi-unilateral landing, 2) experience 

a greater magnitude of load throughout the absorption phase at the ground and at the 

knee joint, and 3) land with joint mechanics associated with an extended landing 

strategy. Specifically, the intact limb will land with reduced joint flexion at touchdown 

and undergo less joint flexion ROM in the ankle, knee, hip and trunk; experience 

increased knee joint valgus angles at touchdown and greater valgus motion; absorb 

greater peak joint powers; complete greater joint work; and perform in-phase flexion 

coordination strategies with a greater utilisation of the distal joints compared to a 

control limb. 

8.2. Methods 

Data collection procedures for drop landing can be found in Chapter 3 Section 3.4.5 

and the data processing were completed as outlined in Chapter 3 Section 3.5. . 

Chapter 7 Section 7.2.2 discusses the biomechanical features extracted. Movement 

and loading features were extracted from the intact limb of ITTAs (n = 8) and the 

dominant control limb (n = 21) where dominance was defined as the limb that would 

be chosen first to complete a unilateral landing. One control participant was excluded 

from the analysis due to hip marker occlusion issues. 

In addition to the biomechanical features from Chapter 7, this chapter extracted the 

limb vertical impulse and the touchdown timing difference. The limb vertical impulse 
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was calculated for the duration of the absorption phase as the area under the vGRF-

time curves for the intact limb and control limb individually. The timing difference of 

touchdown between limbs was calculated in seconds from touchdown of the intact 

limb/control limb to the touchdown of the prosthetic limb/non-dominant control limb.  

8.2.1. Statistical Analysis 

Independent t-tests were performed to assess differences between the intact and 

control limbs for the loading and movement features. Loading waveforms were 

assessed using statistical parametric mapping (see Chapter 2 Section 2.7. ). 

8.3. Results 

Participant demographics are presented in Table 7.1 in Section 7.3.  of Chapter 7.  

8.3.1. Loading Differences 

The vGRF and compressive KF magnitudes differed significantly between groups. 

The intact limb demonstrated significantly greater vGRF from 84-87% of the 

absorption phase (p < 0.001; Figure 8.1A) and in the compressive KFz from 15-27% 

(p < 0.001; Figure 8.1C) compared to the control limb. No other significant differences 

between the intact and control limbs were present in the loading waveforms.  
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8.3.2. Movement Differences 

Joint angle and power waveform data are presented in Appendix D2. The vertical 

impulse experienced in the intact limb was significantly greater than that experienced 

by the control limb (Table 8.1). The touchdown timing difference was significantly 

greater in the ITTA group where the intact limb contacted the ground earlier than the 

prosthetic limb. The absorption duration was not significantly different between 

groups. 

 

 

Figure 8.1. Each row presents the 3-dimensional loading waveforms for the A) GRFs, B) knee 
moments (KM), and C) intersegmental knee forces (KF) in the intact limb (IL; red dashed line) 
and dominant-control limb (DCL; black solid line). Loading waveforms are presented for the 
duration of the absorption phase. The highlighted red area represents the phase of significant 
difference between the IL and DCL with the p-value noted based on the SPM {t}-statistic 
results. 
GRFx = lateral-medial, GRFy = anterior-posterior, vGRF = vertical, KAM = external knee 
adduction moment, KFM = external knee flexor moment, KMz = internal-external, KFy = 
lateral-medial, KFx = anterior-posterior, and KFz = compression 
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Table 8.1. Whole-body features (mean ± SD) for the ITTA and control groups 

 ITTA Control p-value 

Limb Impulse (N/kg/s) 2.25 ± 0.65 1.65 ± 0.48   0.011 

Absorption Duration (s) 0.18 ± 0.07 0.17 ± 0.08   0.801 

Touchdown Timing (s) 0.07 ± 0.04 0.03 ± 0.01 <0.001 

 

No significant differences were found between the intact and control limbs for any of 

the joint kinematic features in the sagittal plane during landing (p ≥ 0.131; Figure 

8.2A). Additionally, no significant differences were found in the frontal plane for the 

knee joint angle at touchdown (p = 0.854) or ROM (p = 0.795). No significant 

differences were found in the joint coordination strategies as represented by the 

coupling angle in any of the lower-limb joint pairs (p ≥ 0.499; Figure 8.2B). All joint 

pair coupling angles represented in-phase flexion strategies, with the knee-hip and 

hip-ankle joint pairs utilising greater flexion from the knee and ankle, respectively. 

The peak ankle joint absorption power was significantly greater in the intact limb 

compared to the control limb (p = 0.011; Figure 8.2C). Knee and hip joint peak 

absorption powers were not significantly different between the intact and control limbs 

(p ≥ 0.204). 
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No significant differences in the total joint work or the work completed at any individual 

joints were found between the intact and control limbs (p ≥ 0.104; Figure 8.3A). The 

total negative joint work performed was 14% greater in the intact limb (p = 0.117). 

There were no significant differences between groups for the work done at the ankle 

joint (p = 0.104; intact limb: -0.84 ± 0.27 J/kg, control limb: -0.71 ± 0.14 J/kg), knee 

joint (p = 0.808; intact limb: -0.68 ± 0.24 J/kg, control limb: -0.66 ± 0.25 J/kg), or hip 

joint (p = 0.222; intact limb: -0.37 ± 0.19 J/kg, control limb: -0.26 ± 0.23 J/kg). Both 

the intact and control limbs performed the greatest negative work at the ankle joint 

(44%; Figure 8.3B). 

 

 

 

Figure 8.2. A) Joint angular position at touchdown (TD) and joint range of motion (ROM) in the 
sagittal and frontal plane, B) joint coordination coupling angle for the ankle-knee (AK), knee-
hip (KH) and hip-ankle (HA) joint pairs, and C) peak joint absorption powers when landing at 
the ankle, knee, and hip joints in the intact limb (IL) and dominant control limb (DCL). *p < 0.05 
between groups 
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8.3.3. Variability Sub-Analysis 

The greater impulse experienced in the intact limb was only evident by an increased 

vGRF when nearing maximum knee flexion and compressive KF within the initial 

loading response. It is possible that significant phases of difference elsewhere in the 

vertical forces and within other loading waveforms were not present due to the large 

standard deviation in the ITTA cohort (Figure 8.1). Thus, this sub-analysis aimed to 

determine the source of the loading waveform variability, if the variability was group 

specific (i.e. ITTA vs control), and any joint mechanics that may mediate the 

development of load.  

When reviewing the data, peak vGRF was significantly higher in the intact limb of 

three ITTAs compared to the other five ITTAs (p < 0.001; HighITTA: 38.4 ± 3 N/kg, 

LowITTA: 19.5 ± 4 N/kg; Figure 8.4). ITTAs were split into highITTA and lowITTA peak 

magnitude groups using a threshold based on the mean peak vGRF magnitude. 

Figure 8.3. A) The individual joint work completed and B) the percentage contribution of each 
joint relative to the total negative joint work performed in the ankle, knee, and hip joints for the 
intact limb (IL) and dominant control limb (DCL) during the absorption phase of landing 
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Figure 8.4 shows the reduction in variability in the vGRF waveform when splitting the 

ITTA cohort based on this threshold. 

 

SPM analysis of the loading waveforms between highITTA and lowITTA groups found 

significant differences in the vGRF and KFz waveforms from ~47-74% of the 

absorption phase (p < 0.001) representing differences in peak magnitude and 

possibly loading rates. No other significant differences were found in the other limb 

and knee joint loading waveforms. The highITTA group spent less time in the absorption 

phase (p = 0.015; HighITTA: 0.11 ± 0.02 s, LowITTA: 0.22 ± 0.05 s). Therefore, there 

was no significant difference in the vertical impulse experienced between highITTA and 

lowITTA groups (p = 0.148). The timing to peak vGRF in seconds was not different 

between lowITTA and highITTA groups (p = 0.209) suggesting a lower loading rate was 

experienced in the lowITTA group. Previous research has demonstrated that excessive 

vertical forces and higher loading rates can damage the articular cartilage in the joint 

(Tsai et al., 2017, Vanwanseele et al., 2010) and increase the risk of injury occurrence 

Figure 8.4. vGRF waveforms (mean and SD cloud) for the intact 
limb of ITTA participants with a higher peak magnitude (solid line) 
and lower peak magnitude (dashed line). 
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(Radin & Paul, 1971, Aerts et al., 2013). As lower vertical forces are present in the 

lowITTA, the joint mechanics utilised could indicate a load-avoidance strategy. Those 

in the highITTA group also exhibited a significantly greater peak knee absorption power 

(p = 0.025; highITTA: -25.7 ± 9.1 W/kg, lowITTA: -12.4 ± 3.9 W/kg) and significantly less 

trunk flexion (p = 0.018; highITTA: 5.35 ± 2.0, lowITTA: 16.6 ± 5.7). This suggests that 

increasing the duration of the absorption phase, by performing greater trunk flexion 

and decreasing peak knee joint absorption power, could reduce the peak magnitude 

and loading rates of the vGRF and KFz.  

An additional examination was performed to assess the variability in the vGRF 

waveforms from 20-30% (Figure 8.4). In the highITTA group, the variability occurred 

due to differences in the impact peak (Figure 8.5A). The lowITTA group variability from 

20-30% occurred due to differences in the timing to peak vGRF as a percentage of 

the absorption phase (Figure 8.5B). Two participants had an earlier peak vGRF 

(early-lowITTA; dashed line) and three participants had a later peak vGRF (late-lowITTA; 

solid line). No difference was present in the time to peak vGRF in seconds between 

the early-lowITTA and late-lowITTA groups. Further, the early-lowITTA group had a longer 

duration of the absorption phase (p = 0.015; early-lowITTA: 0.27 ± 0.04 s, late-lowITTA: 

0.18 ± 0.03 s). These results suggest that the variability depicted in the time-

normalised vGRF waveforms for the two early-lowITTA participants may be due to the 

time-normalisation process. This indicates the importance of examining the duration 

of the absorption phase (i.e. the time-domain) when analysing waveforms to aid in 

the interpretation of the results.  
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Based on Table 8.1, the duration of the absorption phase was not significantly 

different between the ITTAs and controls yet both groups had high variability for this 

feature based on the standard deviation. The above analysis demonstrated that the 

ITTA sub-groups (highITTA and lowITTA) were able to explain the variability in the 

duration of the absorption phase. Therefore, the control cohort was additionally 

separated into highc and lowc peak vGRF sub-groups. The sub-groupings for the 

control limb were not as distinct as the ITTA sub-groups due to the presence of a 

‘middle’ group (n = 3). The ‘middle’ group was identified by examining those 

participants who were within ±10% of the average peak vGRF. The number of 

participants included in the ‘middle’ group did not change if a 5% or 15% threshold 

was used indicating no issues with group classifications. The ‘middle’ group 

participants were excluded from further analysis to ensure that comparisons were 

made on divergent groups (total left: n = 18; Highc: n = 8 and Lowc: n = 10). 

Figure 8.6A presents the vGRF waveforms for the highc and lowc control sub-groups. 

While this sub-grouping did explain some of the variability, there is still variability 

present throughout. Figure 8.6B and Figure 8.6C show the individual trials for the 

Figure 8.5. Individual mean trials for the A) high and B) low peak vGRF ITTA groups to illustrate 
variability in the vGRF waveform from ~20-30% of the absorption phase. Vertical black dashed 
lines indicate the average time at which peak vGRF occurred. The two dot-dashed lines in the 
low peak vGRF sub-group indicates the early peak participants. 
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highc and lowc sub-groups, respectively. These figures highlight that the variability is 

occurring due to differences in the time to peak vGRF as a percentage of the 

absorption phase. Regardless of the highc or lowc sub-groups, the time to peak vGRF 

in seconds was not significantly different between the individuals represented by 

dashed lines in Figure 8.6B&C (p = 0.884; 0.07 ± 0.02 s) and those presented by 

black solid lines (0.07 ± 0.01 s). Therefore, the variability in the vGRF waveforms was 

also due to differences in the duration of the absorption phase similar to that of the 

ITTA low sub-group.  

 

 

Figure 8.6. A) Control lowc (dashed line) and highc (solid line) sub-groups mean and standard 
deviation clouds. Individual trials for B) highc and C) lowc sub-group and participants with the 
earlier time to peak vGRF represented by a dashed line. 



Chapter 8: Bilateral Drop Landings
 

175 

 

Comparisons of the joint mechanics between highc and lowc sub-groups were similar 

to those found between the highITTA and lowITTA sub-groups. The highc group exhibited 

significantly reduced ankle ROM (p = 0.013; Highc: 43.4 ± 4.8°, Lowc: 50.6 ± 5.8°) and 

knee flexion angles at touchdown (p = 0.036; Highc: 11.8 ± 2.8°, Lowc: 16.2 ± 4.8°). 

Additionally, the highc group performed significantly greater peak absorption powers 

at the ankle (p = 0.044; Highc: -16.9 ± 3.2 W/kg, Lowc: -13.5 ± 3.2 W/kg) and knee 

joints (p = 0.016; Highc:  -22.8 ± 11 W/kg, Lowc: -12.5 ± 4.3 W/kg). This indicates that 

peak vGRF can be reduced by increasing duration of the absorption phase by 

increasing the ankle ROM and knee flexion angle at initial contact and decreasing the 

ankle and knee joint absorption powers (i.e. reducing angular velocity). The results 

from the sub-analysis suggest that the intact limb of ITTAs behaves similar to that of 

able-bodied controls. 

The variability in the vGRF waveforms was unable to explain the variability in the KAM 

and KFy waveforms. Further investigation determined that the variability in the ITTA 

intact limb was due to two outliers. A single outlier was identified for KAM due to a 

valgus knee angle at initial contact that was not present in the other ITTA participants. 

After initial contact, the knee joint moved past the neutral frontal plane and into a 

varus position throughout the absorption phase. A different ITTA participant was 

identified as an outlier for KFy as they experienced greater medial knee joint forces 

compared to the other ITTA participants. This participant landed with the greatest 

knee varus angle at initial contact. In comparison to the control limbs, the results from 

the KAM and KFy waveform analyses did not change after the outliers were removed 

from their respective analyses. This indicates that the outliers did not impact the 

waveform analysis results for the KAM and KFy waveforms. It is possible with a bigger 

sample size a sub-group of participants could perform similar KAM and KFy loading 

patterns to these two outliers. This could indicate a secondary approach in the joint 

mechanics to land from a jump. 
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8.4. Discussion 

This study investigated the bilateral drop landing mechanics in the intact limb of ITTAs 

that were utilised to control the downward momentum when the possible influence 

from the prosthetic limb was present. The first hypothesis was confirmed as the ITTA 

participant performed a quasi-unilateral landing based on the significantly different 

touchdown timings (Table 8.1). The second and third hypotheses were partially 

confirmed. The intact limb experienced significantly greater vGRF at the end of the 

absorption phase, significantly greater compressive KFz during initial loading, and 

absorbed significantly greater peak power at the ankle joint. No other differences 

were present in the load or movement features between groups.  

The quasi-unilateral landing performed by the ITTA group denoted a significantly 

earlier touchdown of the intact limb compared to the prosthetic limb. On average, the 

intact limb experienced 39% of the total absorption phase before the prosthetic limb 

contacted the ground, while the control limb experienced 17% before contact with the 

contralateral limb. The intact limb also experienced 66% of the total vertical impulse 

compared to the control groups who experienced the same impulse in both limbs 

(50%). The touchdown timing difference for the ITTAs was greater in this study 

compared to the Schoeman et al. (2013) study (0.07 ± 0.04 s vs 0.04 ± 0.02 s, 

respectively). This difference between studies possibly occurred due to the difference 

in landing heights and jump task (drop landing from 30 cm vs countermovement jump 

landing from 15 ± 6 cm). This may indicate that at higher landing heights the quasi-

unilateral landing strategy is amplified. Despite this quasi-unilateral landing, there 

were limited differences in the limb and joint load experienced in the intact limb 

compared to the control limb. Of the few differences found in late vGRF and early 

KFz, it is likely that these differences are due to the influence from the prosthetic limb 

as no differences were present between groups when performing a unilateral drop 

landing (Chapter 7). 
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The intact limb of ITTAs in the Schoeman et al. (2013) study found a peak vGRF of 

25.3 ± 5 N/kg from a jump height of 15 ± 6 cm. Interestingly, this was equivalent to 

the peak vGRF experienced in the intact limb of the current study (26.5 ± 10 N/kg) 

when dropping from double the height (31.6 cm). The intact limb in the current study 

underwent greater ROM at all lower-limb joints compared to the Schoeman et al. 

(2013) participants. In a study by Yeow et al. (2010), able-bodied individuals 

performing bilateral drop landings from different landing heights (30 cm vs 60 cm) 

were found to experience the same peak vGRF. When the height increased, 

participants adapted their shock absorption approach by performing greater maximal 

knee flexion angles and greater eccentric knee joint work which subsequently 

resulted in limiting the peak vGRF experienced. While the Yeow et al. (2010) study 

focused solely on the knee joint, the results from the current study suggest that ITTAs 

are able to accommodate increased landing heights by increasing the joint motion 

and work completed at all lower-limb joints to an equivalent magnitude as control 

participants.  This study presents some evidence to suggest that the significantly 

lower jump heights achieved by ITTAs compared to able-bodied individuals is less 

likely due to an attempt to limit the load experienced during landing but rather an 

inability to generate the propulsion required. 

The intact limb of ITTAs experienced significantly greater limb impulse, therefore, 

14% greater total negative work was completed to reduce the same overall 

momentum compared to the control group. This was primarily performed by the ankle 

joint as a significantly greater peak ankle joint absorption power was found in the 

intact limb (Table 8.2C). This may have contributed to the limited significant 

differences found in the loading patterns, yet was not an optimal shock absorption 

approach as the vertical forces tended to be greater in the intact limb. However, there 

was a large standard deviation in the loading patterns and in the knee and hip joint 

peak power and work done. This possibly indicates different landing techniques were 
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performed. 

8.5. Conclusion 

The limited differences in the loading patterns and the landing mechanics performed 

to attenuate load suggests that the ITTAs in this study were able to reduce the 

momentum adequately from a height double their typical jump height (~15 cm). 

However, there was a possible effect from the prosthetic limb due to the few instances 

of significantly increased vertical forces in the intact limb compared to the control 

limbs that was absent when performing a unilateral drop landing. Both ITTAs and 

control participants performed two distinct landing strategies. Increasing trunk flexion 

and reducing knee joint absorption power could increase the duration of the 

absorption phase and, therefore, possibly reduce the peak vGRF and compressive 

KFz and loading rates. Performance of these mechanics may enable ITTAs to 

participate in standing sports and gain the cardiovascular benefits of such exercise 

without experiencing high load. 

Independent of the presence of an amputation, both ITTAs and controls can reduce 

peak magnitudes of vertical force when landing by increasing trunk flexion and 

utilising the ankle joint as the main shock absorber. 

8.6. Further Work 

Due to the variability in the loading waveforms for the intact limb, it is possible that 

the prosthetic limb may perform different strategies that elicit different responses from 

the intact limb. Further research is warranted to examine the joint mechanics of the 

prosthetic limb. One possible approach is by utilising cluster analysis techniques. 

Clustering of sub-group landing strategies in the prosthetic limb based on joint 

mechanics may indicate specific responses performed in the intact limb to 

accommodate for the reduced prosthetic absorption capacity. 
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Chapter 9.  

Conclusion  

 

The present work aimed to provide a greater understanding of the loading patterns 

experienced in the intact limb of ITTAs and assess the joint mechanisms 

underpinning any differences in limb and knee joint load. The results of this thesis 

have provided a base understanding of these mechanisms to aid in the advancement 

of rehabilitation and exercise protocols for individuals with unilateral transtibial 

amputations (ITTAs). 

Mechanical overloading of a joint is thought to place an individual at an increased risk 

of developing joint degenerative diseases, such as osteoarthritis (Farrokhi et al., 

2016). The intact limb of ITTAs is at a 25-28% greater risk of joint degeneration 

compared to the general population (Struyf et al., 2009, Norvell et al., 2005). Thus, it 

is important to understand the loading patterns experienced in the intact limb of ITTAs 

and identify those features that are associated with overloading. However, 

inconclusive results from walking gait research presented limited to no evidence of 

overloading occurring in the intact limb of ITTAs compared to controls. It was 

postulated that these inconsistent results were, in part, due to: 1) the discrete nature 

of commonly assessed loading features (discussed in Section 9.1), 2) an 

inappropriate selection of loading features (discussed in Section 9.2), and 3) 

overloading not being present in walking gait, but rather in other tasks, such as step 

descent. Strategies that could be utilised in step descent and drop landing tasks to 

reduce whole-limb and joint loading are discussed in Section 9.3.  
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9.1. Waveform Analysis 

Waveform analysis, through statistical parametric mapping (SPM), was utilised to 

overcome the limitations associated with discrete point analysis, such as, the possibly 

biased a priori approach when selecting ‘key’ features (Pataky, 2012, Richter et al., 

2014b). When applying SPM, the investigator must decide whether landmark 

registration of the waveforms is necessary to interpret the results correctly. Landmark 

registration was utilised in chapters 4 and 5 as variation in the timing of ‘key’ events 

resulted in magnitude comparisons across different physiological phases. 

Additionally, landmark registration warped the time-domain (i.e. the duration of the 

phase of interest in seconds) to gain additional information regarding the timing of 

events (i.e. loading rates). Chapters 7 and 8, examining drop landings, did not employ 

landmark registration due to the relatively short landing phase that could result in 

over-registration. Over-registration could remove important phases of interest as 

significant results and indicate other phases as important that only became significant 

due to time-warping too much (Moudy et al., 2018). 

When applying SPM and landmark registration, findings from chapter 4 and 5 

indicated two overall phases of interest: initial loading response and sustained 

midstance load. The initial loading response phase was indicative of the established 

discrete features utilised in previous research, i.e. loading rates and peak 

magnitudes. Analysis of the landmark registered time-domain demonstrated that a 

faster rate of load was experienced when performing a heel initial contact descent 

strategy. This result was interpreted from the time-domain as it was warped such that 

the time to peak magnitude was shorter for the heel contact group (Appendix C1). 

More commonly utilised in the literature is peak magnitude, however, this discrete 

point was not significantly different between groups for any loading waveform. This 

indicates the greater relative importance of loading rates over peak magnitudes 

(Morgenroth et al., 2014). Discrete point analysis of peak magnitude and loading rates 
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would have likely yielded similar results to that found by waveform analysis; however, 

given the issues of accurately calculating loading rates (e.g. impact peaks), SPM and 

landmark registration could remove these issues as both the magnitude and time-

domains can be examined. Further, the sustained midstance loading phase is not 

commonly assessed in the literature, yet Chapters 4 & 5 indicated this phase to be a 

contributing feature associated with the presence of overloading. Thus, waveform 

analysis and landmark registration effectively reduced the bias in the selection of 

loading features.  

Limited to no differences were found in the loading waveforms presented in chapters 

7 & 8. However, there was large variability in the loading waveform data of both ITTAs 

and controls which may have masked any significant differences. It is possible that 

discrete point analyses of established variables could have found significant 

differences between groups, however, this would have concealed the variability in the 

waveform that indicated distinct approaches to landing. When high variability is 

present in the loading waveforms, this would suggest that multiple approaches to 

perform the task demands are present and further inspection is required. Future 

research should utilise waveform analysis when the literature is unclear on the 

appropriate discrete features to answer the research questions, yet caution should 

be used when interpreting SPM results. 

9.2. Intact Limb Loading 

In chapter 4, an analysis was performed to demonstrate the influence of descent 

strategies on the development of load in able-bodied controls. Indeed, a toe initial 

contact reduced initial vGRF and KAM loading rates to peak magnitude; had 

increased intersegmental knee forces in the medial and anterior directions 

immediately following initial contact; and maintained a greater sustained midstance 

vGRF, KAM, and compressive and anterior knee forces compared to a heel initial 

contact. As these loading differences were maintained after covarying for stepping 
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speed, it was postulated that the development of load stemmed from differences in 

the leading limb and trailing limb mechanics (discussed in Section 9.3). It is possible 

that medial and anterior forces at the knee joint increased immediately following initial 

contact as a consequence of the extended leading limb (Chapter 6; Podraza & White, 

2010, Tsai et al., 2017) which could induce cartilage and ligament damage (Paterno 

& Hewett, 2008, Stergiou et al., 2007). However, Hunt et al. (2010) found individuals 

that present with a heel strike transient, associated with anterior GRF and posterior 

knee force, are more likely to exhibit greater joint degeneration. While a toe initial 

contact could reduce vGRF and KAM loading rates, a consequence may be increased 

medial and anterior knee joint forces. As recommended in further research (Section 

9.6. ), the relative contribution of each measure of load to the onset and progression 

of joint degeneration must be investigated. 

Chapter 5 utilised ITTAs as an experimental model to further examine the role of the 

trailing limb on the development of lead limb loading. ITTAs performed a toe initial 

contact strategy when descending from a step. Few significant differences in loading 

patterns were found compared to able-bodied controls performing the same descent 

strategy (Chapter 5). This occurred despite significant reductions in the trailing limb 

capacity to lower the centre of mass (CoM) and propel the CoM to continue forward 

progression. A more extended leading limb was performed by ITTAs possibly to 

compensate for the trailing limb deficiencies. This indicates that the chosen descent 

strategy was not necessarily an attempt to reduce load but could additionally be 

chosen due to the reduced functionality of the prosthetic trailing limb. This may have 

allowed the intact limb ankle joint to act as a more efficient shock absorber than the 

controls and, therefore, reduce the load experienced at the ground and at the knee 

joint. Additionally, it was also postulated that significant reductions in stepping speed 

may have aided in reducing anterior-posterior ground and knee joint load as these 

features were only significant after covarying for speed. The significantly greater 
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medial GRFx that was present in the intact limb of ITTAs independent of stepping 

speed was, therefore, most likely due to the more plantarflexed ankle joint in the 

leading limb (Simpson & Jiang, 1999). However, stepping speed was not a significant 

contributor in the reduction of initial loading rates, sustained loading magnitudes, or 

anterior-posterior knee forces (KFx; Chapter 6). This indicates the importance of 

leading limb and trailing limb joint mechanics in the reduction of load independent of 

walking speed. 

To limit lead limb loading throughout the braking phase, a toe contact strategy should 

be performed to reduce initial vGRF and KAM loading rates while a heel contact 

strategy should be performed to reduce vGRF and KAM sustained loading (Chapter 

6). These recommendations are based on the vGRF and KAM loading only as they 

are commonly examined loading features associated with joint degeneration (Schmitz 

& Noehren, 2014, Vanwanseele et al., 2010). Chapters 4 & 5 additionally found that 

these two features exhibited significant differences in both the initial loading response 

and sustained loading phase between descent strategies and between ITTAs and 

control participants. However, other loading features that differed significantly 

between descent strategies may contribute to joint degeneration. After covarying for 

speed, the intact limb of ITTAs experienced a greater anterior knee force (Chapter 

5). Initial peak anterior-posterior KFx was additionally assessed suggesting that a 

greater anterior KFx was strongly related to increased peak ankle joint absorption 

power in the leading limb, consistent with a toe contact strategy. As discussed above, 

the literature is currently unclear as to the extent to which anterior KFx may contribute 

to joint degeneration. 

9.3. Joint Mechanics 

The intact limb of ITTAs can attenuate increased loading demand in higher impact 

activities by performing joint mechanics that are not significantly different from able-

bodied controls (Chapter 5 & 7). This could suggest that no inherent deficiencies in 
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the intact limb are present post-amputation. The few instances of overloading in the 

intact limb that were found in Chapter 5, 7, & 8 are, therefore, most likely due to other 

influences that could alter the intact limb mechanics. These influences could be the 

task demand (i.e. vertical displacement during horizontal progression) or prosthetic 

limb contributions that results in inappropriate compensatory strategies in the intact 

limb contributing to high load. Thus, it is plausible that altering the joint mechanics in 

both the intact and prosthetic limbs could provide optimal strategies to reduce load 

(Chapter 6).  

The dynamic walking theory has demonstrated between-limb influences are present 

during level-walking in both able-bodied (Kuo, 2007) and ITTA populations 

(Morgenroth et al., 2011). This between-limb influence has previously only been 

assessed by examining the GRF impulse under each limb and the propulsive work 

from the ankle joint alone. The results from chapter 6 & 8 indicate that between-limb 

influences can occur in other continuous anti-phase movement tasks, such as step 

descent, and possibly when performing discrete in-phase tasks, such as drop 

landings. Significant bivariate correlations were found between trailing limb joint 

coordination and propulsive mechanics and lead limb vGRF, KAM, and anterior KFx 

loading during step descent (abs. r = 0.37-0.53, p < 0.05). After accounting for all 

other features, including stepping speed, trailing limb mechanics remained significant 

or tended to be significant predictors for vGRF loading rates and vGRF and KAM 

sustained midstance load (p ≤ 0.068). Joint coordination of the trailing limb when 

lowering the CoM reflected flexing ankle and knee joints, while the hip extended. This 

approach was significantly related to reduced vGRF loading rates and reduced vGRF 

and KAM sustained load. Increased propulsion from the knee and hip joints was also 

associated with reduced vGRF and KAM sustained load (Chapter 6). This indicates 

that joint mechanics, beyond that of the ankle joint, are important in reducing 

contralateral limb loading. Further, when performing a bilateral landing, the intact limb 
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of ITTAs experienced significantly greater vGRF and compressive knee forces 

(Chapter 8). These differences were not present when performing a unilateral landing 

(Chapter 7). This could suggest an influence from the prosthetic limb contributions as 

all other variables were kept consistent. The results from both tasks suggest that 

changes in limb loading can occur due the mechanics from both the ipsilateral and 

contralateral limbs.  

Joint coordination is the ability of a system to functionally control joints in time and in 

sequence to produce a functional movement pattern (Byrne et al., 2002). Much of 

joint coordination research has been qualitative in nature and limited research has 

investigated the possible relationship between coordination strategies and injury 

(Hughes & Watkins, 2008, Doherty et al., 2014). Trailing limb joint coordination to 

lower the CoM, during single support on the step platform, was found to be a 

significant predictor in reducing early and midstance lead limb loading (Chapter 6). 

Additionally, coordination strategies were significantly different between descent 

strategies even when limited to no significant differences were present in the 

individual joint motion (Chapter 4 & 5). This confirms the importance of examining the 

relative influence of one joint on another in the production of movement and its 

importance in reducing load.  

9.4. Application for ITTAs 

Based on the previously discussed step descent strategies (Section 9.3), it is possible 

that introduction of these gait modifications prior as soon as possible after 

amputations could reduce the risk of injury occurrence and possibly delay or prevent 

the onset of degenerative diseases. Regression models suggested that increased 

trailing limb propulsion from the hip joint and absorption power from the knee joint 

could reduce sustained load. This provides a possible solution for ITTAs to increase 

propulsive capacity that is lost at the prosthetic ankle joint. 
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In addition to the step descent strategies, inclusion of drop landings in rehabilitation 

and exercise protocols could aid in the development of strength and coordination of 

the joints. Dropping from a height of 30 cm was associated with limb and joint loading 

that had limited to no significant differences from able-bodied controls (Chapter 7 & 

8). This could suggest that unilateral and bilateral drop landings do not place the intact 

limb at a greater risk of joint degeneration. Bilateral drop landings provide an added 

benefit of stimulating osteogenesis of the bone in the prosthetic limb that is commonly 

unloaded (Gailey et al., 2008). Landing on both limbs from a height of up to 30 cm 

may provide the loading required to reduce the risk of osteoporosis in the prosthetic 

limb while promoting stimulation of the quadriceps musculature and coordination 

between-limbs.  

Landing during sport requires rapid deceleration of the CoM. Generation of 

quadriceps muscle force rapidly (i.e. explosive strength) has been suggested as an 

important feature in re-stabilisation of the joint following mechanical perturbations 

(Tillin et al., 2013, Andersen & Aagaard, 2006, Aagaard et al., 2002). Explosive 

strength training can provide a functional benefit in reducing the risk of falls by aiding 

in balance recovery after a trip (Bento et al., 2010). Including drop landings during 

rehabilitation could introduce explosive strength training earlier and provide functional 

benefits in daily life. 

9.5. Limitations 

Limitations of the thesis include the inability to control the prostheses worn by 

participants, Plug-in-Gait and inverse dynamic assumptions, and the small number of 

ITTAs. While not part of the inclusion criteria, all participants did wear dynamic elastic 

response type prostheses that allowed for participation in higher impact activity. 

Inverse dynamic calculations do not consider any co-contraction between agonist and 

antagonist muscle groups during movement (Robertson et al., 2013). Additionally, 

calculation of the intersegmental joint forces can underestimate the actual joint 
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contact forces as muscle co-contraction and compressive forces due to ligamentous 

structures are not included (Zajac et al., 2002). However, this approach is an easy 

and non-invasive alternative to in vivo and computationally expensive and complex 

modelling approaches (Silverman & Neptune, 2014, Zhao et al., 2007).  

Another limitation is the process of linearly time-normalising the data for waveform 

analysis. To avoid over- or under-stretching the data during time-normalisation, the 

average duration of the phase of interest (in frames) was used as the number of 

frames to lengthen or shorten each waveform across all participants. The sub-

analysis in chapter 8 indicated that some of the variation present in the waveform 

loading patterns were due to large standard deviations in the duration of the 

absorption phase. Due to the differences in this duration, some waveforms during 

linear time-normalisation indicated an earlier time to peak which was not present in 

its original temporal-spatial format. However, the variability in the waveform analysis 

identified two distinct sub-groups that utilised differing mechanics to land from the 

specified height (as discussed in Section 9.1). Thus, examination of the time-domain 

and discrete temporal measures should be examined to aid in the interpretation of 

the results from waveform analyses. 

9.6. Further Work 

This thesis provided information on the mechanics that are performed by ITTAs 

during step descent and drop landing tasks. This information can be utilised for further 

research on intervention studies. Additional suggestions for further work other than 

that already indicated in each chapter are as follows: 

1) It is possible that the sustained loading phase during a step descent could be 

an additional indicator of the risk of developing degenerative loading diseases. 

Given the greater risk of joint degeneration in the ITTA population, and that 

the ITTAs in the current study experienced a significantly greater sustained 
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load, further work is warranted to determine the relationship of this loading 

phase to the onset and progression of joint cartilage degeneration.  

 

2) Degenerative disease are thought to occur due to contributions from 

multiplanar limb and joint loading. However, the current research is unclear 

on the magnitude and extent of these contributions to joint degeneration. 

Further research on the percentage contribution of each loading feature 

assessed in the current thesis to increases in joint degeneration is needed. 

This information could identify which loading features should be targeted in 

gait modification strategies.  

 

3) While not examined in this study, the asymmetry or magnitude of difference 

in load between the intact limb and prosthetic limb may be an additional factor 

in the increased risk of developing loading related diseases. Step and stair 

descent research on the load experienced denote that ITTAs exhibit a 

significantly increased peak magnitude of load and loading rate in the intact 

limb compared to the prosthetic limb (Buckley et al., 2013, Barnett et al., 2014, 

Schmalz et al., 2007). As limited differences in load were present between the 

intact limb and control limbs, it may be that the magnitude of asymmetry 

places ITTAs at a greater risk of injury. 

 

4) Waveform analysis can indicate different loading patterns within and between 

subject populations. Differentiation of loading patterns could indicate subset 

populations utilising different mechanics to attenuate load. Further research 

could utilise the loading waveform patterns in cluster analysis techniques to 

aid in determining the mechanics utilised in each subset to indicate the 

mechanisms possibly related to injury.  
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 To test the validity of force data collected from the step platform, both static and 

dynamic data were collected. Static data were collected from three different masses: 

~20 kg, ~30 kg, and ~40 kg. These weights were measures on three separate scales 

and averaged to determine known weight quantities. The variability of the force output 

over 2 seconds was calculated as the standard deviation and the accuracy was 

determined as the difference of the mean force signal from the actual mass (DfA). 

These data from the step platform were compared to the same force platform (FP) 

without the step platform attachment (Table B1.1). 

 

The overall variability of the static vertical ground reaction force (vGRF) signal ranged 

from 1.54 – 1.66N for all three weights and was consistent with and without the step 

platform. The step platform consistently underestimated each mass from 2.38 – 2.78N 

while FP1 consistently overestimated by 2.11 – 3.17N. The average difference 

between the two data collection methods was greatest as the mass increased (Table 

B1.2). The difference between the upper and lower LOA is between 8.6 and 9.4N 

suggesting an effect from the step platform. Previous research has suggested that a 

greater than 5N difference between FPs can result in cumulative error in higher-order 

calculations (Rist et al., 2014, Wong et al., 2010). To address this possible issue, 

Table B1.1. Static variability and accuracy measures for the standard force platform 
position output (FP1) and with the addition of the step platform output (step) for 
three different masses 

 ~20 kg Mass  ~30 kg Mass   ~40 kg Mass 

 FP1 Step FP1 Step FP1 Step 

Mean (N) 190 186 308 302 426 420 

SD (N) 1.54 1.54 1.63 1.62 1.66 1.66 

DfA (N) 2.11 -2.38 2.60 -2.78 3.17 -2.67 

MAE 2.26 2.45 2.69 2.81 3.21 2.72 

DfA = difference from actual, MAE = mean absolute error 
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dynamic movement was captured and analysed to assess the validity of capturing 

force data using the step platform. 

Table B1.2. Bland-Altman 95% limits of agreement (LOA) between 
the standard force platform output and the step platform force output 
for three different masses 

 Mass 1 Mass 2 Mass 3 

Avg. Difference (N) -4.50 -5.37 -5.84 

Upper 95% LOA -0.20 -0.87 -1.15 

Lower 95% LOA -8.79 -9.87 -10.5 

 

Dynamic habitual walking peak vGRF, peak anterior-posterior GRF (hGRF), vertical 

and anterior-posterior impulse, and knee external adduction moment (KAM) data 

were captured from three participants as they walked across FP1 with and without 

the step platform. Three trials per participant (n = 9 per condition) with successful foot 

strikes were captured. To determine if any differences were present between 

conditions, dependent t-tests were performed with an alpha level set at 0.05. Table 

B1.3 presents the mean and standard deviation for both conditions with their 

respective p-values. Results suggest force data collected from the step platform 

provide accurate and reliable force platform data. 

 

 

Table B1.3. Mean (SD) and p-values presented for discrete dynamic 
walking features for both force platform conditions 

 FP1 Step p-value 

Peak vGRF (N/kg)  11.4 ± 0.5 11.7 ± 0.4 0.545 

Peak KAM (N.m/kg)  0.82 ± 3.1  0.82 ± 2.8 0.995 

Peak hGRF (N/kg) -2.61 ± 0.3 -2.33 ± 0.5 0.283 

Vertical Impulse  3.29 ± 0.1  3.28 ± 0.0 0.814 

A-P Impulse -0.28 ± 0.1 -0.36 ± 0.1 0.092 
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Table B2.1. Static frame variability between trials 

 Mean SD SEM 

Z: Rod 2 434.7 0.1 0.2 

Z: Rod 3 376.8 0.1 0.9 

Z: Rod 4 58.1 0.1 0.9 

X: Rod 3&4 401.6 0.0 0.8 

Y: Rod 2&3 360.6 0.0 0.3 

XY: Rod 2&4 541.7 0.0 0.9 

XYZ: Rod 2&4 695.0 0.0 0.5 

 

 

1 

A. B. 

Figure B2.1. A) Configuration of the rigid frame, showing rod and marker positions. B) Base 
plate dimensions from rod centre to rod centre. Neither diagram to scale.  
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The purpose of this pilot study was to determine 1. The reliability and accuracy of 

individual force platforms, and 2. The validity of cross-platform strikes in comparison 

to full-platform strikes. To assess these aims, both static and dynamic data were 

collected. Static data was assessed with three known weight quantities for full and 

cross-platform conditions. The vertical ground reaction force for the cross-platform 

condition was manually summed in excel.  

 

 

 

 

Table B3.1. Static vertical ground reaction force (N) reliability and 

accuracy of both full-plate and cross-plate strikes for three different known 

masses 

 FP1 FP2 FP1 & 2 FP3 FP2 & 3 

Mass 1      

Mean 190.4 191.3 189.5 190.6 190.5 

SD 1.54 1.54 1.99 1.95 2.29 

DfA 2.11 2.96 1.17 2.33 2.17 

MAE 2.26 2.99 1.89 2.55 2.59 

Mass 2      

Mean 307.7 308.8 306.0 309.0 308.9 

SD 1.63 1.59 2.09 2.07 2.40 

DfA 2.60 3.71 0.90 3.91 3.73 

MAE 2.69 3.72 1.84 3.96 3.87 

Mass 3      

Mean 425.8 426.4 423.1 422.4 427.3 

SD 1.66 1.55 2.12 1.93 2.44 

DfA 3.17 3.69 0.44 -0.31 4.63 

MAE 3.21 3.70 1.74 1.56 4.69 

DfA = difference from actual mass; MAE = mean absolute error 
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Dynamic walking trials were collected from one participant for both strike conditions 

(n = 3 trials per force platform).  Force data were filtered using a 4th order Butterworth 

filter with a cut-off frequency of 8Hz. Data were body mass and time normalised. An 

SPM ANOVA was run between the full-platform strikes and corresponding cross-

platform strikes. No significant differences were found between strike conditions. The 

results from this pilot study validate the force output and subsequent inverse dynamic 

calculations from a cross-platform strike. Foot strikes are still invalid for FP to floor 

strikes and when both feet are in contact with the same FP at the same time.  
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This pilot study was conducted to determine the reliability of marker placement. 

Marker placement is crucial in the calculation of joint centre location and subsequent 

inverse dynamic calculations. Two participants were marked up twice on the same 

day and the average distance between lower body markers during a static trial was 

determined. 

 

Table B4.1. Within-day repeatability of marker placement for two participants 

 Participant 1  Participant 2  

 Trial 1 Trial 2 SEM Trial 1 Trial 2 SEM 

Inter ASIS 232 235 0.06 283 286 0.06 

Left ASIS to Knee 444 438 0.09 465 464 0.05 

Right ASIS to Knee 449 438 0.17 466 462 0.06 

Left Knee to Ankle 457 456 0.02 404 402 0.03 

Right Knee to Ankle 451 459 0.14 401 399 0.04 
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Figure C1.3. Knee moment landmark registered magnitude-domain (top row), time-
domain (middle row), and warping function (bottom row) with significant differences 
highlighted in grey between heel initial contact (black) and toe initial contact (blue) 
descent strategies. The vertical dashed line represents the end of the double support 
phase. 
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Figure C2.3. Knee moment landmark registered magnitude-domain (top row), time-
domain (middle row), and warping function (bottom row) for the intact limb of ITTAs 
(red) and toe initial contact (black) control limb. The vertical dashed line represents 
the end of the double support phase. 
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Appendix D. 

Lower-Limb Joint Angle and Power 
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Figure D1.1. Leading limb sagittal plane joint angle and power waveforms for the ankle, 
knee, and hip during a step descent for the heel initial contact (HC) controls (black), toe initial 
contact (TC) controls (blue), and intact limb of ITTAs (red). Calculation of joint range of 
motion (ROM) and *peak powers are denoted on their respective figures. 
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Figure D1.2. Trailing limb sagittal plane joint angle and power waveforms for the ankle, knee, 
and hip during a step descent for the heel initial contact (HC) controls (black), toe initial 
contact (TC) controls (blue), and prosthetic limb (PL) of ITTAs (red). Calculation of joint range 
of motion (ROM) and *peak powers are denoted on their respective figures. The vertical 
black dashed line represents initial contact of the leading limb. 
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Figure D2.1. Unilateral drop landing sagittal plane joint angle and power waveforms for the 
ankle, knee, and hip when landing on the intact limb (IL) of ITTAs (red) and dominant control 
limb (DCL; black). 
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Figure D2.2. Bilateral drop landing sagittal plane joint angle and power waveforms for the 
ankle, knee, and hip when landing on the intact limb (IL) of ITTAs (red) and dominant control 
limb (DCL; black). 
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Appendix E. 
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The features utilised in the regression model were chosen as the best representation 

of the significant differences between descent strategies and between ITTAs and 

able-bodied controls. These features reflected the shock absorption approach in the 

leading limb, the joint mechanics to control the lowering of the CoM, and propulsive 

joint mechanics required for continued forward progression. These features also 

represented the lowest combination of variance inflation factors (< 2.5) despite a few 

correlation coefficients greater than 0.7. The threshold levels for correlation 

coefficients present in the literature have ranged from 0.5-0.95. Variance inflation 

factors were, therefore, utilised as a secondary approach to determine 

multicollinearity. 
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Appendix F. 

Chapter 7 Additional Information   
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Analysis of the threshold classification error used to separate the drop landing dataset 

into early and late time to peak vGRF. Seven participants from the entire dataset (n 

= 29) were classified differently depending on whether the time to peak vGRF 

threshold was calculated as the percentage of the absorption phase or in seconds. 

 

Table F1.1. Individual participant time to peak vGRF difference from 
the mean across all participants as a percentage of the absorption 
phase and in seconds 

 Time to Peak 
vGRF (%) 

Time to Peak 
vGRF (s) 

Group 

Participant 1 0.6 0.012 ITTA 

Participant 2 3.7 0.004 ITTA 

Participant 3 7.1 0.005 ITTA 

Participant 4 7.2 0.005 Control 

Participant 5 30.5 0.035 Control 

Participant 6 12.6 0.011 Control 

Participant 7 11.2 0.005 Control 

Bolded indicates values outside of 1 standard deviation from the mean 

 

Table F1.1 demonstrates that six of these participants had values near the mean 

values across all participants indicating the presence of a middle group. One 

participant data indicated an over manipulation of the time-domain when linearly time-

normalising the data due to an extended absorption phase. The point of maximum 

knee flexion, indicating the end of the absorption phase, occurred at a similar time to 

peak ankle and hip flexion and the point when the pelvis origin velocity reached zero. 

This suggests that the definition of the absorption phase was appropriate, and the 

participant was an outlier in how they performed their landing. 
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Figure F1.4. Representative trials for participants in the early and 
late groups in their original temporal format. The figure depicts the 
shorter duration of the absorption phase with a longer time to peak 
vGRF. 

Figure F1.1. Depiction of the middle group (blue) relative to the early 
(solid black) and late (dashed black) groups. 
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