1,724,657 research outputs found

    Walker-Assisted Gait in Rehabilitation: A Study of Biomechanics and Instrumentation

    Get PDF
    While walkers are commonly prescribed to improve patient stability and ambulatory ability, quantitative study of the biomechanical and functional requirements for effective walker use is limited. To date no one has addressed the changes in upper extremity kinetics that occur with the use of a standard walker, which was the objective of this study. A strain gauge-based walker instrumentation system was developed for the six degree-of-freedom measurement of resultant subject hand loads. The walker dynamometer was integrated with an upper extremity biomechanical model. Preliminary system data were collected for seven healthy, right-handed young adults following informed consent. Bilateral upper extremity kinematic data were acquired with a six camera Vicon motion analysis system using a Micro-VAX workstation. Internal joint moments at the wrist, elbow, and shoulder were determined in the three clinical planes using the inverse dynamics method. The walker dynamometer system allowed characterization of upper extremity loading demands. Significantly differing upper extremity loading patterns were Identified for three walker usage methods. Complete description of upper extremity kinetics and kinematics during walker-assisted gait may provide insight into walker design parameters and rehabilitative strategies

    Dynamical spacetimes in conformal gravity

    Full text link
    The conformal gravity remarkably boosts our prehension of gravity theories. We find a series of dynamical solutions in the W2W^2-conformal gravity, including generalized Schwarzschild-Friedmann-Robertson-Walker (GSFRW), charged generalized Schwarzschild-Friedmann-Robertson-Walker (CGSFRW), especially rotating Friedmann-Robertson-Walker (RFRW), charged rotating Friedmann-Robertson-Walker (CRFRW), and a dynamical cylindrically symmetric solutions. The RFRW, CRFRW and the dynamical cylindrically symmetric solutions are never found in the Einstein gravity and modified gravities. The GSFRW and CGSFRW solutions take different forms from the corresponding solutions in the Einstein gravity.Comment: 13 pages, no fi

    A spinor approach to Walker geometry

    Full text link
    A four-dimensional Walker geometry is a four-dimensional manifold M with a neutral metric g and a parallel distribution of totally null two-planes. This distribution has a natural characterization as a projective spinor field subject to a certain constraint. Spinors therefore provide a natural tool for studying Walker geometry, which we exploit to draw together several themes in recent explicit studies of Walker geometry and in other work of Dunajski (2002) and Plebanski (1975) in which Walker geometry is implicit. In addition to studying local Walker geometry, we address a global question raised by the use of spinors.Comment: 41 pages. Typos which persisted into published version corrected, notably at (2.15

    Scaling Properties of Random Walks on Small-World Networks

    Full text link
    Using both numerical simulations and scaling arguments, we study the behavior of a random walker on a one-dimensional small-world network. For the properties we study, we find that the random walk obeys a characteristic scaling form. These properties include the average number of distinct sites visited by the random walker, the mean-square displacement of the walker, and the distribution of first-return times. The scaling form has three characteristic time regimes. At short times, the walker does not see the small-world shortcuts and effectively probes an ordinary Euclidean network in dd-dimensions. At intermediate times, the properties of the walker shows scaling behavior characteristic of an infinite small-world network. Finally, at long times, the finite size of the network becomes important, and many of the properties of the walker saturate. We propose general analytical forms for the scaling properties in all three regimes, and show that these analytical forms are consistent with our numerical simulations.Comment: 7 pages, 8 figures, two-column format. Submitted to PR

    Compliant walker

    Get PDF
    A compliant walker is provided for humans having limited use of their legs and lower back. It includes an upright wheel frame which at least partially surrounds an upright user wearing a partial body harness. It is attached to the frame by means of cable compliant apparatus consisting of sets of cable segments and angle bracket members connected between opposite side members of the frame and adjacent side portions of the harness. Novelty is believed to exist in the combination of a wheeled frame including a side support structure, a body harness, and compliance means connecting the body harness to the side support structure for flexibility holding and supporting a person in a substantially upright position when the user sags in the frame when taking weight off the lower extremities
    • …
    corecore