312 research outputs found

    Continuous Tasks and the Asynchronous Computability Theorem

    Get PDF
    The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized distributed tasks that are wait-free solvable and uncovered deep connections with combinatorial topology. We provide an alternative characterization of those tasks by means of the novel concept of continuous tasks, which have an input/output specification that is a continuous function between the geometric realizations of the input and output complex: We state and prove a precise characterization theorem (CACT) for wait-free solvable tasks in terms of continuous tasks. Its proof utilizes a novel chromatic version of a foundational result in algebraic topology, the simplicial approximation theorem, which is also proved in this paper. Apart from the alternative proof of the ACT implied by our CACT, we also demonstrate that continuous tasks have an expressive power that goes beyond classic task specifications, and hence open up a promising venue for future research: For the well-known approximate agreement task, we show that one can easily encode the desired proportion of the occurrence of specific outputs, namely, exact agreement, in the continuous task specification

    The Relative Power of Composite Loop Agreement Tasks

    Get PDF
    Loop agreement is a family of wait-free tasks that includes set agreement and simplex agreement, and was used to prove the undecidability of wait-free solvability of distributed tasks by read/write memory. Herlihy and Rajsbaum defined the algebraic signature of a loop agreement task, which consists of a group and a distinguished element. They used the algebraic signature to characterize the relative power of loop agreement tasks. In particular, they showed that one task implements another exactly when there is a homomorphism between their respective signatures sending one distinguished element to the other. In this paper, we extend the previous result by defining the composition of multiple loop agreement tasks to create a new one with the same combined power. We generalize the original algebraic characterization of relative power to compositions of tasks. In this way, we can think of loop agreement tasks in terms of their basic building blocks. We also investigate a category-theoretic perspective of loop agreement by defining a category of loops, showing that the algebraic signature is a functor, and proving that our definition of task composition is the "correct" one, in a categorical sense.Comment: 18 page

    Relating L-Resilience and Wait-Freedom via Hitting Sets

    Full text link
    The condition of t-resilience stipulates that an n-process program is only obliged to make progress when at least n-t processes are correct. Put another way, the live sets, the collection of process sets such that progress is required if all the processes in one of these sets are correct, are all sets with at least n-t processes. We show that the ability of arbitrary collection of live sets L to solve distributed tasks is tightly related to the minimum hitting set of L, a minimum cardinality subset of processes that has a non-empty intersection with every live set. Thus, finding the computing power of L is NP-complete. For the special case of colorless tasks that allow participating processes to adopt input or output values of each other, we use a simple simulation to show that a task can be solved L-resiliently if and only if it can be solved (h-1)-resiliently, where h is the size of the minimum hitting set of L. For general tasks, we characterize L-resilient solvability of tasks with respect to a limited notion of weak solvability: in every execution where all processes in some set in L are correct, outputs must be produced for every process in some (possibly different) participating set in L. Given a task T, we construct another task T_L such that T is solvable weakly L-resiliently if and only if T_L is solvable weakly wait-free

    Read-Write Memory and k-Set Consensus as an Affine Task

    Get PDF
    The wait-free read-write memory model has been characterized as an iterated \emph{Immediate Snapshot} (IS) task. The IS task is \emph{affine}---it can be defined as a (sub)set of simplices of the standard chromatic subdivision. It is known that the task of \emph{Weak Symmetry Breaking} (WSB) cannot be represented as an affine task. In this paper, we highlight the phenomenon of a "natural" model that can be captured by an iterated affine task and, thus, by a subset of runs of the iterated immediate snapshot model. We show that the read-write memory model in which, additionally, kk-set-consensus objects can be used is, unlike WSB, "natural" by presenting the corresponding simple affine task captured by a subset of 22-round IS runs. Our results imply the first combinatorial characterization of models equipped with abstractions other than read-write memory that applies to generic tasks

    Tight Bounds for Connectivity and Set Agreement in Byzantine Synchronous Systems

    Get PDF
    In this paper, we show that the protocol complex of a Byzantine synchronous system can remain (k−1)(k - 1)-connected for up to ⌈t/k⌉\lceil t/k \rceil rounds, where tt is the maximum number of Byzantine processes, and t≥k≥1t \ge k \ge 1. This topological property implies that ⌈t/k⌉+1\lceil t/k \rceil + 1 rounds are necessary to solve kk-set agreement in Byzantine synchronous systems, compared to ⌊t/k⌋+1\lfloor t/k \rfloor + 1 rounds in synchronous crash-failure systems. We also show that our connectivity bound is tight as we indicate solutions to Byzantine kk-set agreement in exactly ⌈t/k⌉+1\lceil t/k \rceil + 1 synchronous rounds, at least when nn is suitably large compared to tt. In conclusion, we see how Byzantine failures can potentially require one extra round to solve kk-set agreement, and, for nn suitably large compared to tt, at most that

    Topological Characterization of Consensus Solvability in Directed Dynamic Networks

    Full text link
    Consensus is one of the most fundamental problems in distributed computing. This paper studies the consensus problem in a synchronous dynamic directed network, in which communication is controlled by an oblivious message adversary. The question when consensus is possible in this model has already been studied thoroughly in the literature from a combinatorial perspective, and is known to be challenging. This paper presents a topological perspective on consensus solvability under oblivious message adversaries, which provides interesting new insights. Our main contribution is a topological characterization of consensus solvability, which also leads to explicit decision procedures. Our approach is based on the novel notion of a communication pseudosphere, which can be seen as the message-passing analog of the well-known standard chromatic subdivision for wait-free shared memory systems. We further push the elegance and expressiveness of the "geometric" reasoning enabled by the topological approach by dealing with uninterpreted complexes, which considerably reduce the size of the protocol complex, and by labeling facets with information flow arrows, which give an intuitive meaning to the implicit epistemic status of the faces in a protocol complex

    A generalized asynchronous computability theorem

    Full text link
    We consider the models of distributed computation defined as subsets of the runs of the iterated immediate snapshot model. Given a task TT and a model MM, we provide topological conditions for TT to be solvable in MM. When applied to the wait-free model, our conditions result in the celebrated Asynchronous Computability Theorem (ACT) of Herlihy and Shavit. To demonstrate the utility of our characterization, we consider a task that has been shown earlier to admit only a very complex tt-resilient solution. In contrast, our generalized computability theorem confirms its tt-resilient solvability in a straightforward manner.Comment: 16 pages, 5 figure
    • …
    corecore