8,025 research outputs found

    Results on lattice vector quantization with dithering

    Get PDF
    The statistical properties of the error in uniform scalar quantization have been analyzed by a number of authors in the past, and is a well-understood topic today. The analysis has also been extended to the case of dithered quantizers, and the advantages and limitations of dithering have been studied and well documented in the literature. Lattice vector quantization is a natural extension into multiple dimensions of the uniform scalar quantization. Accordingly, there is a natural extension of the analysis of the quantization error. It is the purpose of this paper to present this extension and to elaborate on some of the new aspects that come with multiple dimensions. We show that, analogous to the one-dimensional case, the quantization error vector can be rendered independent of the input in subtractive vector-dithering. In this case, the total mean square error is a function of only the underlying lattice and there are lattices that minimize this error. We give a necessary condition on such lattices. In nonsubtractive vector dithering, we show how to render moments of the error vector independent of the input by using appropriate dither random vectors. These results can readily be applied for the case of wide sense stationary (WSS) vector random processes, by use of iid dither sequences. We consider the problem of pre- and post-filtering around a dithered lattice quantifier, and show how these filters should be designed in order to minimize the overall quantization error in the mean square sense. For the special case where the WSS vector process is obtained by blocking a WSS scalar process, the optimum prefilter matrix reduces to the blocked version of the well-known scalar half-whitening filter

    Effects of Multirate Systems on the Statistical Properties of Random Signals

    Get PDF
    In multirate digital signal processing, we often encounter time-varying linear systems such as decimators, interpolators, and modulators. In many applications, these building blocks are interconnected with linear filters to form more complicated systems. It is often necessary to understand the way in which the statistical behavior of a signal changes as it passes through such systems. While some issues in this context have an obvious answer, the analysis becomes more involved with complicated interconnections. For example, consider this question: if we pass a cyclostationary signal with period K through a fractional sampling rate-changing device (implemented with an interpolator, a nonideal low-pass filter and a decimator), what can we say about the statistical properties of the output? How does the behavior change if the filter is replaced by an ideal low-pass filter? In this paper, we answer questions of this nature. As an application, we consider a new adaptive filtering structure, which is well suited for the identification of band-limited channels. This structure exploits the band-limited nature of the channel, and embeds the adaptive filter into a multirate system. The advantages are that the adaptive filter has a smaller length, and the adaptation as well as the filtering are performed at a lower rate. Using the theory developed in this paper, we show that a matrix adaptive filter (dimension determined by the decimator and interpolator) gives better performance in terms of lower error energy at convergence than a traditional adaptive filter. Even though matrix adaptive filters are, in general, computationally more expensive, they offer a performance bound that can be used as a yardstick to judge more practical "scalar multirate adaptation" schemes

    A Novel Model of Working Set Selection for SMO Decomposition Methods

    Full text link
    In the process of training Support Vector Machines (SVMs) by decomposition methods, working set selection is an important technique, and some exciting schemes were employed into this field. To improve working set selection, we propose a new model for working set selection in sequential minimal optimization (SMO) decomposition methods. In this model, it selects B as working set without reselection. Some properties are given by simple proof, and experiments demonstrate that the proposed method is in general faster than existing methods.Comment: 8 pages, 12 figures, it was submitted to IEEE International conference of Tools on Artificial Intelligenc

    Wall Orientation and Shear Stress in the Lattice Boltzmann Model

    Full text link
    The wall shear stress is a quantity of profound importance for clinical diagnosis of artery diseases. The lattice Boltzmann is an easily parallelizable numerical method of solving the flow problems, but it suffers from errors of the velocity field near the boundaries which leads to errors in the wall shear stress and normal vectors computed from the velocity. In this work we present a simple formula to calculate the wall shear stress in the lattice Boltzmann model and propose to compute wall normals, which are necessary to compute the wall shear stress, by taking the weighted mean over boundary facets lying in a vicinity of a wall element. We carry out several tests and observe an increase of accuracy of computed normal vectors over other methods in two and three dimensions. Using the scheme we compute the wall shear stress in an inclined and bent channel fluid flow and show a minor influence of the normal on the numerical error, implying that that the main error arises due to a corrupted velocity field near the staircase boundary. Finally, we calculate the wall shear stress in the human abdominal aorta in steady conditions using our method and compare the results with a standard finite volume solver and experimental data available in the literature. Applications of our ideas in a simplified protocol for data preprocessing in medical applications are discussed.Comment: 9 pages, 11 figure

    Coding gain in paraunitary analysis/synthesis systems

    Get PDF
    A formal proof that bit allocation results hold for the entire class of paraunitary subband coders is presented. The problem of finding an optimal paraunitary subband coder, so as to maximize the coding gain of the system, is discussed. The bit allocation problem is analyzed for the case of the paraunitary tree-structured filter banks, such as those used for generating orthonormal wavelets. The even more general case of nonuniform filter banks is also considered. In all cases it is shown that under optimal bit allocation, the variances of the errors introduced by each of the quantizers have to be equal. Expressions for coding gains for these systems are derived

    Using a neural network-based feature extraction method to facilitate citation screening for systematic reviews

    Get PDF
    Citation screening is a labour-intensive part of the process of a systematic literature review that identi- fies citations eligible for inclusion in the review. In this paper, we present an automatic text classification approach that aims to prioritise eligible citations earlier than ineligible ones and thus reduces the man- ual labelling effort that is involved in the screening process. e.g. by automatically excluding lower ranked citations. To improve the performance of the text classifier, we develop a novel neural network-based feature extraction method. Unlike previous approaches to citation screening that employ unsupervised feature extraction methods to address a supervised classification task, our proposed method extracts doc- ument features in a supervised setting. In particular, our method generates a feature representation for documents, which is explicitly optimised to discriminate between eligible and ineligible citations. The generated document representation is subsequently used to train a text classifier. Experiments show that our feature extraction method obtains average workload savings of 56% when evaluated across 23 medical systematic reviews. The proposed method outperforms 10 baseline feature extraction methods by approximately 6% in terms of the WSS @95% metric

    Results on optimal biorthogonal filter banks

    Get PDF
    Optimization of filter banks for specific input statistics has been of interest in the theory and practice of subband coding. For the case of orthonormal filter banks with infinite order and uniform decimation, the problem has been completely solved in recent years. For the case of biorthogonal filter banks, significant progress has been made recently, although a number of issues still remain to be addressed. In this paper we briefly review the orthonormal case, and then present several new results for the biorthogonal case. All discussions pertain to the infinite order (ideal filter) case. The current status of research as well as some of the unsolved problems are described
    corecore