2 research outputs found

    Thermal-Hydraulics in Nuclear Fusion Technology: R&D and Applications

    Get PDF
    In nuclear fusion technology, thermal-hydraulics is a key discipline employed in the design phase of the systems and components to demonstrate performance, and to ensure the reliability and their efficient and economical operation. ITER is in charge of investigating the transients of the engineering systems; this included safety analysis. The thermal-hydraulics is required for the design and analysis of the cooling and ancillary systems such as the blanket, the divertor, the cryogenic, and the balance of plant systems, as well as the tritium carrier, extraction and recovery systems. This Special Issue collects and documents the recent scientific advancements which include, but are not limited to: thermal-hydraulic analyses of systems and components, including magneto-hydrodynamics; safety investigations of systems and components; numerical models and code development and application; codes coupling methodology; code assessment and validation, including benchmarks; experimental infrastructures design and operation; experimental campaigns and investigations; scaling issue in experiments

    Thermal Hydraulic Analysis on the Water Lead Lithium Cooled Blanket for CFETR

    No full text
    A new type of Water Lead Lithium Cooled (WLLC) blanket that adopts the modular design scheme, water cooling the structure components, liquid PbLi as breeder and coolant, and SiC as the thermal insulator between PbLi and structures is under development as a candidate blanket concept for the Chinese Fusion Engineering Test Reactor (CFETR). Based on a poloidal-radial slice model, thermal hydraulic analysis is performed for this blanket to validate the feasibility of design goals. Results show that the present design can achieve the outlet temperature in the range of 600–700 °C, with all the material temperatures safely below the upper limits. A series of sensitivity analyses are also carried out. It indicates that the thermal conductivity (TC) of SiC would have a significant influence on the temperature field, streamlines and pressure drop; that is, lower TC of SiC can maintain the temperature of PbLi at a high level, and induce an increased number of vortices in the liquid PbLi flow as well as a larger pressure drop. On this basis, the joint effects of the TC of SiC and inlet velocity on the performance of blanket thermal hydraulics are analyzed, then the so-called “attainable region” is proposed. Finally, optimization design studies are carried out by decreasing the width of the front channel. Comparison results show that the present design is the most reasonable
    corecore