22 research outputs found

    A neural network for semantic labelling of structured information

    Get PDF
    Intelligent systems rely on rich sources of information to make informed decisions. Using information from external sources requires establishing correspondences between the information and known information classes. This can be achieved with semantic labelling, which assigns known labels to structured information by classifying it according to computed features. The existing proposals have explored different sets of features, without focusing on what classification techniques are used. In this paper we present three contributions: first, insights on architectural issues that arise when using neural networks for semantic labelling; second, a novel implementation of semantic labelling that uses a state-of-the-art neural network classifier which achieves significantly better results than other four traditional classifiers; third, a comparison of the results obtained by the former network when using different subsets of features, comparing textual features to structural ones, and domain-dependent features to domain-independent ones. The experiments were carried away with datasets from three real world sources. Our results show that there is a need to develop more semantic labelling proposals with sophisticated classification techniques and large features catalogues.Ministerio de Economía y Competitividad TIN2016-75394-

    DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices

    Full text link
    Deploying deep neural networks on mobile devices is a challenging task. Current model compression methods such as matrix decomposition effectively reduce the deployed model size, but still cannot satisfy real-time processing requirement. This paper first discovers that the major obstacle is the excessive execution time of non-tensor layers such as pooling and normalization without tensor-like trainable parameters. This motivates us to design a novel acceleration framework: DeepRebirth through "slimming" existing consecutive and parallel non-tensor and tensor layers. The layer slimming is executed at different substructures: (a) streamline slimming by merging the consecutive non-tensor and tensor layer vertically; (b) branch slimming by merging non-tensor and tensor branches horizontally. The proposed optimization operations significantly accelerate the model execution and also greatly reduce the run-time memory cost since the slimmed model architecture contains less hidden layers. To maximally avoid accuracy loss, the parameters in new generated layers are learned with layer-wise fine-tuning based on both theoretical analysis and empirical verification. As observed in the experiment, DeepRebirth achieves more than 3x speed-up and 2.5x run-time memory saving on GoogLeNet with only 0.4% drop of top-5 accuracy on ImageNet. Furthermore, by combining with other model compression techniques, DeepRebirth offers an average of 65ms inference time on the CPU of Samsung Galaxy S6 with 86.5% top-5 accuracy, 14% faster than SqueezeNet which only has a top-5 accuracy of 80.5%.Comment: AAAI 201

    A Homomorphic Encryption Framework for Privacy-Preserving Spiking Neural Networks

    Get PDF
    Machine learning (ML) is widely used today, especially through deep neural networks (DNNs); however, increasing computational load and resource requirements have led to cloud-based solutions. To address this problem, a new generation of networks has emerged called spiking neural networks (SNNs), which mimic the behavior of the human brain to improve efficiency and reduce energy consumption. These networks often process large amounts of sensitive information, such as confidential data, and thus privacy issues arise. Homomorphic encryption (HE) offers a solution, allowing calculations to be performed on encrypted data without decrypting them. This research compares traditional DNNs and SNNs using the Brakerski/Fan-Vercauteren (BFV) encryption scheme. The LeNet-5 and AlexNet models, widely-used convolutional architectures, are used for both DNN and SNN models based on their respective architectures, and the networks are trained and compared using the FashionMNIST dataset. The results show that SNNs using HE achieve up to 40% higher accuracy than DNNs for low values of the plaintext modulus t, although their execution time is longer due to their time-coding nature with multiple time steps

    TexPose: Neural Texture Learning for Self-Supervised 6D Object Pose Estimation

    Full text link
    In this paper, we introduce neural texture learning for 6D object pose estimation from synthetic data and a few unlabelled real images. Our major contribution is a novel learning scheme which removes the drawbacks of previous works, namely the strong dependency on co-modalities or additional refinement. These have been previously necessary to provide training signals for convergence. We formulate such a scheme as two sub-optimisation problems on texture learning and pose learning. We separately learn to predict realistic texture of objects from real image collections and learn pose estimation from pixel-perfect synthetic data. Combining these two capabilities allows then to synthesise photorealistic novel views to supervise the pose estimator with accurate geometry. To alleviate pose noise and segmentation imperfection present during the texture learning phase, we propose a surfel-based adversarial training loss together with texture regularisation from synthetic data. We demonstrate that the proposed approach significantly outperforms the recent state-of-the-art methods without ground-truth pose annotations and demonstrates substantial generalisation improvements towards unseen scenes. Remarkably, our scheme improves the adopted pose estimators substantially even when initialised with much inferior performance
    corecore