83 research outputs found

    A Framework for Cyber Vulnerability Assessments of InfiniBand Networks

    Get PDF
    InfiniBand is a popular Input/Output interconnect technology used in High Performance Computing clusters. It is employed in over a quarter of the world’s 500 fastest computer systems. Although it was created to provide extremely low network latency with a high Quality of Service, the cybersecurity aspects of InfiniBand have yet to be thoroughly investigated. The InfiniBand Architecture was designed as a data center technology, logically separated from the Internet, so defensive mechanisms such as packet encryption were not implemented. Cyber communities do not appear to have taken an interest in InfiniBand, but that is likely to change as attackers branch out from traditional computing devices. This thesis considers the security implications of InfiniBand features and constructs a framework for conducting Cyber Vulnerability Assessments. Several attack primitives are tested and analyzed. Finally, new cyber tools and security devices for InfiniBand are proposed, and changes to existing products are recommended

    Implications and Limitations of Securing an InfiniBand Network

    Get PDF
    The InfiniBand Architecture is one of the leading network interconnects used in high performance computing, delivering very high bandwidth and low latency. As the popularity of InfiniBand increases, the possibility for new InfiniBand applications arise outside the domain of high performance computing, thereby creating the opportunity for new security risks. In this work, new security questions are considered and addressed. The study demonstrates that many common traffic analyzing tools cannot monitor or capture InfiniBand traffic transmitted between two hosts. Due to the kernel bypass nature of InfiniBand, many host-based network security systems cannot be executed on InfiniBand applications. Those that can impose a significant performance loss for the network. The research concludes that not all network security practices used for Ethernet translate to InfiniBand as previously suggested and that an answer to meeting specific security requirements for an InfiniBand network might reside in hardware offload

    A Framework for Analyzing Advanced Malware and Software

    Get PDF
    Vulnerabilities in software, whether they be malicious or benign are a major concern in every sector. My research broadly focused on security testing of software, including malware. For the last few years, ransomware attacks have become increasingly prevalent with the growth of cryptocurrencies.The first part of my research presents a strategy to recover from ransomware attacks by backing up critical information in slack space. In this work, I designed RDS3, a novel ransomware defense strategy, in which we stealthily back up data in the spare space of a computing device, such that the data encrypted by ransomware can be restored. The key concept is that unused space can backup critical data, which is fully isolated from the system. In this way, no ransomware will be able to \u27\u27touch\u27\u27 the backup data regardless of what privilege it is able to obtain.Next, my research focused on understanding ransomware from both structural and behavioral perspectives to design CRDETECTOR, crypto-ransomware detector. Reverse engineering is performed on executables at different levels such as raw binaries, assembly codes, libraries, and function calls to better analysis and interpret the purpose of code segments. In this work, I applied data-mining techniques to correlate multi-level code components (derived from reverse engineering process) to find unique signatures to identify ransomware families.As part of security testing of software, I conducted research on InfiniBand (IB) which supports remote direct memory access without making two copies of data (one in user space and the other in kernel space) and thus provides very low latency and very high throughput. To this end, for many industries, IB has become a promising new inter-connect protocol over Ethernet technologies and ensuring the security of is critical. To do this, the first step is to have a thorough understanding of the vulnerabilities of its current implementations, which is unfortunately still missing in the literature. While my extensive penetration testing could not find any significant security loopholes, there are certain aspects in both the design and the implementations that need to be addressed

    Security in an evolving European HPC Ecosystem

    Get PDF
    The goal of this technical report is to analyse challenges and requirements related to security in the context of an evolving European HPC ecosystem, to provide selected strategies on how to address them, and to come up with a set of forward-looking recommendations. A key assumption made in this technical report is that we are in a transition period from a setup, where HPC resources are operated in a rather independent manner, to centres providing a variety of e-infrastructure services, which are not exclusively based on HPC resources and are increasingly part of federated infrastructures

    Application-centric bandwidth allocation in datacenters

    Get PDF
    Today's datacenters host a large number of concurrently executing applications with diverse intra-datacenter latency and bandwidth requirements. Some of these applications, such as data analytics, graph processing, and machine learning training, are data-intensive and require high bandwidth to function properly. However, these bandwidth-hungry applications can often congest the datacenter network, leading to queuing delays that hurt application completion time. To remove the network as a potential performance bottleneck, datacenter operators have begun deploying high-end HPC-grade networks like InfiniBand. These networks offer fully offloaded network stacks, remote direct memory access (RDMA) capability, and non-discarding links, which allow them to provide both low latency and high bandwidth for a single application. However, it is unclear how well such networks accommodate a mix of latency- and bandwidth-sensitive traffic in a real-world deployment. In this thesis, we aim to answer the above question. To do so, we develop RPerf, a latency measurement tool for RDMA-based networks that can precisely measure the InfiniBand switch latency without hardware support. Using RPerf, we benchmark a rack-scale InfiniBand cluster in both isolated and mixed-traffic scenarios. Our key finding is that the evaluated switch can provide either low latency or high bandwidth, but not both simultaneously in a mixed-traffic scenario. We also evaluate several options to improve the latency-bandwidth trade-off and demonstrate that none are ideal. We find that while queue separation is a solution to protect latency-sensitive applications, it fails to properly manage the bandwidth of other applications. We also aim to resolve the problem with bandwidth management for non-latency-sensitive applications. Previous efforts to address this problem have generally focused on achieving max-min fairness at the flow level. However, we observe that different workloads exhibit varying levels of sensitivity to network bandwidth. For some workloads, even a small reduction in available bandwidth can significantly increase completion time, while for others, completion time is largely insensitive to available network bandwidth. As a result, simply splitting the bandwidth equally among all workloads is sub-optimal for overall application-level performance. To address this issue, we first propose a robust methodology capable of effectively measuring the sensitivity of applications to bandwidth. We then design Saba, an application-aware bandwidth allocation framework that distributes network bandwidth based on application-level sensitivity. Saba combines ahead-of-time application profiling to determine bandwidth sensitivity with runtime bandwidth allocation using lightweight software support, with no modifications to network hardware or protocols. Experiments with a 32-server hardware testbed show that Saba can significantly increase overall performance by reducing the job completion time for bandwidth-sensitive jobs

    Challenges and complexities in application of LCA approaches in the case of ICT for a sustainable future

    Get PDF
    In this work, three of many ICT-specific challenges of LCA are discussed. First, the inconsistency versus uncertainty is reviewed with regard to the meta-technological nature of ICT. As an example, the semiconductor technologies are used to highlight the complexities especially with respect to energy and water consumption. The need for specific representations and metric to separately assess products and technologies is discussed. It is highlighted that applying product-oriented approaches would result in abandoning or disfavoring of new technologies that could otherwise help toward a better world. Second, several believed-untouchable hot spots are highlighted to emphasize on their importance and footprint. The list includes, but not limited to, i) User Computer-Interfaces (UCIs), especially screens and displays, ii) Network-Computer Interlaces (NCIs), such as electronic and optical ports, and iii) electricity power interfaces. In addition, considering cross-regional social and economic impacts, and also taking into account the marketing nature of the need for many ICT's product and services in both forms of hardware and software, the complexity of End of Life (EoL) stage of ICT products, technologies, and services is explored. Finally, the impact of smart management and intelligence, and in general software, in ICT solutions and products is highlighted. In particular, it is observed that, even using the same technology, the significance of software could be highly variable depending on the level of intelligence and awareness deployed. With examples from an interconnected network of data centers managed using Dynamic Voltage and Frequency Scaling (DVFS) technology and smart cooling systems, it is shown that the unadjusted assessments could be highly uncertain, and even inconsistent, in calculating the management component's significance on the ICT impacts.Comment: 10 pages. Preprint/Accepted of a paper submitted to the ICT4S Conferenc

    Data center resilience assessment : storage, networking and security.

    Get PDF
    Data centers (DC) are the core of the national cyber infrastructure. With the incredible growth of critical data volumes in financial institutions, government organizations, and global companies, data centers are becoming larger and more distributed posing more challenges for operational continuity in the presence of experienced cyber attackers and occasional natural disasters. The main objective of this research work is to present a new methodology for data center resilience assessment, this methodology consists of: • Define Data center resilience requirements. • Devise a high level metric for data center resilience. • Design and develop a tool to validate and the metric. Since computer networks are an important component in the data center architecture, this research work was extended to investigate computer network resilience enhancement opportunities within the area of routing protocols, redundancy, and server load to minimize the network down time and increase the time period of resisting attacks. Data center resilience assessment is a complex process as it involves several aspects such as: policies for emergencies, recovery plans, variation in data center operational roles, hosted/processed data types and data center architectures. However, in this dissertation, storage, networking and security are emphasized. The need for resilience assessment emerged due to the gap in existing reliability, availability, and serviceability (RAS) measures. Resilience as an evaluation metric leads to better proactive perspective in system design and management. The proposed Data center resilience assessment portal (DC-RAP) is designed to easily integrate various operational scenarios. DC-RAP features a user friendly interface to assess the resilience in terms of performance analysis and speed recovery by collecting the following information: time to detect attacks, time to resist, time to fail and recovery time. Several set of experiments were performed, results obtained from investigating the impact of routing protocols, server load balancing algorithms on network resilience, showed that using particular routing protocol or server load balancing algorithm can enhance network resilience level in terms of minimizing the downtime and ensure speed recovery. Also experimental results for investigating the use social network analysis (SNA) for identifying important router in computer network showed that the SNA was successful in identifying important routers. This important router list can be used to redundant those routers to ensure high level of resilience. Finally, experimental results for testing and validating the data center resilience assessment methodology using the DC-RAP showed the ability of the methodology quantify data center resilience in terms of providing steady performance, minimal recovery time and maximum resistance-attacks time. The main contributions of this work can be summarized as follows: • A methodology for evaluation data center resilience has been developed. • Implemented a Data Center Resilience Assessment Portal (D$-RAP) for resilience evaluations. • Investigated the usage of Social Network Analysis to Improve the computer network resilience

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document
    • …
    corecore