2,623 research outputs found

    Vesicle computers: Approximating Voronoi diagram on Voronoi automata

    Full text link
    Irregular arrangements of vesicles filled with excitable and precipitating chemical systems are imitated by Voronoi automata --- finite-state machines defined on a planar Voronoi diagram. Every Voronoi cell takes four states: resting, excited, refractory and precipitate. A resting cell excites if it has at least one excited neighbour; the cell precipitates if a ratio of excited cells in its neighbourhood to its number of neighbours exceed certain threshold. To approximate a Voronoi diagram on Voronoi automata we project a planar set onto automaton lattice, thus cells corresponding to data-points are excited. Excitation waves propagate across the Voronoi automaton, interact with each other and form precipitate in result of the interaction. Configuration of precipitate represents edges of approximated Voronoi diagram. We discover relation between quality of Voronoi diagram approximation and precipitation threshold, and demonstrate feasibility of our model in approximation Voronoi diagram of arbitrary-shaped objects and a skeleton of a planar shape.Comment: Chaos, Solitons & Fractals (2011), in pres

    Scutoids are a geometrical solution to three-dimensional packing of epithelia

    Get PDF
    As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term “scutoid”. The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs.España Ministerio de Ciencia y Tecnología BFU2013-48988-C2-1-P and BFU2016-8079

    On the Structure of Higher Order Voronoi Cells

    Get PDF
    The classic Voronoi cells can be generalized to a higher-order version by considering the cells of points for which a given kk-element subset of the set of sites consists of the kk closest sites. We study the structure of the kk-order Voronoi cells and illustrate our theoretical findings with a case study of two-dimensional higher-order Voronoi cells for four points.Comment: Minor correction

    Subset Warping: Rubber Sheeting with Cuts

    Full text link
    Image warping, often referred to as "rubber sheeting" represents the deformation of a domain image space into a range image space. In this paper, a technique is described which extends the definition of a rubber-sheet transformation to allow a polygonal region to be warped into one or more subsets of itself, where the subsets may be multiply connected. To do this, it constructs a set of "slits" in the domain image, which correspond to discontinuities in the range image, using a technique based on generalized Voronoi diagrams. The concept of medial axis is extended to describe inner and outer medial contours of a polygon. Polygonal regions are decomposed into annular subregions, and path homotopies are introduced to describe the annular subregions. These constructions motivate the definition of a ladder, which guides the construction of grid point pairs necessary to effect the warp itself
    • …
    corecore