5 research outputs found

    Efficiently Sampling the PSD Cone with the Metric Dikin Walk

    Full text link
    Semi-definite programs represent a frontier of efficient computation. While there has been much progress on semi-definite optimization, with moderate-sized instances currently solvable in practice by the interior-point method, the basic problem of sampling semi-definite solutions remains a formidable challenge. The direct application of known polynomial-time algorithms for sampling general convex bodies to semi-definite sampling leads to a prohibitively high running time. In addition, known general methods require an expensive rounding phase as pre-processing. Here we analyze the Dikin walk, by first adapting it to general metrics, then devising suitable metrics for the PSD cone with affine constraints. The resulting mixing time and per-step complexity are considerably smaller, and by an appropriate choice of the metric, the dependence on the number of constraints can be made polylogarithmic. We introduce a refined notion of self-concordant matrix functions and give rules for combining different metrics. Along the way, we further develop the theory of interior-point methods for sampling.Comment: 54 page

    Volumetric path following algorithms for linear programming

    No full text
    We consider the construction of small step path following algorithms using volumetric, and mixed volumetric-logarithmic, barriers. We establish quadratic convergence of a volumetric centering measure using pure Newton steps, enabling us to use relatively standard proof techniques for several subsequently needed results. Using a mixed volumetric-logarithmic barrier we obtain an O(n^1/4m^1/4L) iteration algorithm for linear programs with n variables and m inequality constraints, providing an alternative derivation for results first obtained by Vaidya and Atkinson. In addition, we show that the same iteration complexity can be attained while holding the work per iteration to O(n^2m), as opposed to O(nm^2), operations, by avoiding use of the true Hessian of the volumetric barrier. Our analysis also provides a simplified proof of self-concordancy of the volumetric and mixed volumetric-logarithmic barriers, originally due to Nesterov and Nemirovskii.
    corecore