3,118 research outputs found

    Implementation and Analysis of an Image-Based Global Illumination Framework for Animated Environments

    Get PDF
    We describe a new framework for efficiently computing and storing global illumination effects for complex, animated environments. The new framework allows the rapid generation of sequences representing any arbitrary path in a view space within an environment in which both the viewer and objects move. The global illumination is stored as time sequences of range-images at base locations that span the view space. We present algorithms for determining locations for these base images, and the time steps required to adequately capture the effects of object motion. We also present algorithms for computing the global illumination in the base images that exploit spatial and temporal coherence by considering direct and indirect illumination separately. We discuss an initial implementation using the new framework. Results and analysis of our implementation demonstrate the effectiveness of the individual phases of the approach; we conclude with an application of the complete framework to a complex environment that includes object motion

    CACHED MULTI-BOUNCE SOLUTION AND RECONSTRUCTION FOR VOXEL-BASED GLOBAL ILLUMINATION

    Get PDF
    International audienceWe address the main shortcomings of the voxel-based multi-bounce global illumination method of Chatelier and Malgouyres (2006), by introducing an iterated cached method which allows increasing sampling coarse-ness at each bounce for improved efficiency, and by introducing a ray-tracing based reconstruction process for a better final image quality. The result is a competitive accurate multi-bounce global illumination method with octree voxel-based irradiance caching

    Instant global illumination on the GPU using OptiX

    Get PDF
    OptiX, a programmable ray tracing engine, has been recently made available by NVidia, relieving rendering researchers from the idiosyncrasies of efficient ray tracing programming and allowing them to concentrate on higher level algorithms, such as interactive global illumination. This paper evaluates the performance of the Instant Global Illumination algorithm on OptiX as well as the impact of three di fferent optimization techniques: imperfect visibility, downsampling and interleaved sampling. Results show that interactive frame rates are indeed achievable, although the combination of all optimization techniques leads to the appearance of artifacts that compromise image quality. Suggestions are presented on possible ways to overcome these limitations

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Interactive display of isosurfaces with global illumination

    Get PDF
    Journal ArticleAbstract-In many applications, volumetric data sets are examined by displaying isosurfaces, surfaces where the data, or some function of the data, takes on a given value. Interactive applications typically use local lighting models to render such surfaces. This work introduces a method to precompute or lazily compute global illumination to improve interactive isosurface renderings. The precomputed illumination resides in a separate volume and includes direct light, shadows, and interreflections. Using this volume, interactive globally illuminated renderings of isosurfaces become feasible while still allowing dynamic manipulation of lighting, viewpoint and isovalue
    • 

    corecore