19 research outputs found

    Minimizaci贸n de p茅rdidas en sistemas de transmisi贸n HVDC multi-terminal usando la t茅cnica de optimizaci贸n MVMO

    Get PDF
    La creciente inserci贸n de generaci贸n principalmente renovable a los sistemas de potencia interconectados hace necesario que sistemas de transmisi贸n HVDC sean considerados como posibilidad de transporte de energ铆a el茅ctrica. Estos sistemas tienen una operaci贸n m谩s complicada en relaci贸n a sistemas AC tradicionales; pero por otra parte tiene un mejor control de voltaje y potencia. Es as铆 que en este trabajo se realiza la minimizaci贸n de p茅rdidas en un sistema de transmisi贸n HVDC, tomando como elemento de control los voltajes de las estaciones convertidoras de una red en DC. Para esta optimizaci贸n se emplea el m茅todo MVMO (Optimizaci贸n por Mapeo de Media Varianza), y la red HVDC de prueba es la denominada CIGRE B4 DC. Tanto el sistema de prueba como el m茅todo de optimizaci贸n son implementados en el software DIgSILENT PowerFactory, encontrando para varios casos resultados favorables, con m铆nimas p茅rdidas, representando esto para el sistema una mejor condici贸n operativa y econ贸mica.The increasing insertion of mainly renewable generation to interconnected power systems makes it necessary for HVDC transmission systems to be considered as a possibility of transporting electrical energy. These systems have a more complicated operation in relation to traditional AC systems; but on the other hand it has better voltage and power control. Thus, in this work the minimization of losses is performed in an HVDC transmission system, taking as control element the voltages of the converting stations of a DC network. For this optimization the MVMO method (Optimization by Medium Variance Mapping) is used, and the test HVDC network is called CIGRE B4 DC. Both the test system and the optimization method are implemented in the DIgSILENT PowerFactory software, finding for several cases favorable results, with minimal losses, representing for the system a better operational and economic condition

    Analysis on the voltage stability on transmission network with PV interconnection

    Get PDF
    Voltage stability means the ability of the power system network to maintain steady-state voltage value at all buses in the system under normal condition and after being subjected to a disturbance. This research highlights the effect of solar photovoltaic (PV) as the subject of disturbance to the network system as this kind of energy source has emerged towards higher level of integration into the national grid. High penetration of solar PV into the grid may cause several issues of stability and security to the system particularly effecting the normal voltage and line overloading. This research is focused on the simulation of power flow to study the transmission network behavior with and without the solar PV interconnection. To accomplish the research objectives, the network system will be modelled in a software known as Power System Simulator for Engineering (PSSE). The simulation result will be discussed and analyzed using Voltage Stability Indices (VSI) to prove and strengthen the theory behind the literature review

    Simulaci贸n de la influencia del STATCOM en las p茅rdidas del sistema de potencia

    Get PDF
    The supply of growing electricity demand is possible through continuous technological advances and the expansion of national and international electrical systems. This scenario could introduce voltage drops and consequent changes in the reactive power flow throughout the electrical network. In order to control these problems, various strategies have been developed as a solution to improve the transport and distribution of electrical energy. One of them is the Flexible Alternating Current Transmission System (FACTS), and more specifically the STATic synchronous COMpensator (STATCOM). This paper investigates the influence and effectiveness of STATCOM to mitigate the losses in the transmission lines and its impacts on bus voltage drops. The simulations are performed using the software DIgSILENT PowerFactory and the results showed that STATCOM reduces the power system losses in an interval of 23.86% until 32.86%, and in addition, the STATCOM decreases the annual energy cost by 7.82% in the implemented test case.El abastecimiento de la creciente demanda el茅ctrica es posible a trav茅s de los continuos avances tecnol贸gicos y la expansi贸n de los sistemas el茅ctricos nacionales e internacionales. Este escenario podr铆a introducir ca铆das de tensi贸n y los consiguientes cambios en el flujo de potencia reactiva en toda la red el茅ctrica. Para controlar estos problemas se han desarrollado diversas estrategias como soluci贸n para mejorar el transporte y distribuci贸n de energ铆a el茅ctrica. Uno de ellos es el Sistema Flexible de Transmisi贸n de Corriente Alterna (FACTS), y m谩s concretamente el STATic synchronous COMpensator (STATCOM). Este art铆culo investiga la influencia y efectividad del STATCOM para mitigar las p茅rdidas en las l铆neas de transmisi贸n y sus impactos en las ca铆das de tensi贸n de las barras. Las simulaciones se realizan utilizando el software DIgSILENT PowerFactory y los resultados mostraron que el STATCOM reduce las p茅rdidas del sistema de potencia en un intervalo de 23,86% hasta 32,86%, y adem谩s, el STATCOM disminuye el costo anual de energ铆a en 7,82% en el caso de prueba implementado.

    Load-ability Analysis during Contingency with Unified Power Flow Controller Using Grey Wolf Optimization Technique

    Get PDF
    Voltage stability enhancement with optimal placement of a unified power flow controller considering load-ability analysis is investigated in this paper. It is essential, because when voltage instability is left unattended, it leads to voltage collapse and, consequently, in a partial or total blackout of the whole network resulting from cascading effect. The optimization process is achieved by increasing the percentage load demand index to the maximum load-ability and under single contingency. This method will be of great benefits to bulk dispatcher of power to plan ahead of how to wheel and deliver power to the end-users during both normal and contingency conditions at the least cost and time. A grey wolf optimization technique is utilised to find the optimal location and sizing of UPFC on the network. The line鈥檚 voltage stability and load margin are then evaluated with and without UPFC under different loading conditions using optimal power flow technique. The approach鈥檚 effectiveness is carried out on 31-bus, 330kV Nigeria National Grid (NNG) based on two scenarios: load-ability analysis under maximum loading of the network and load-ability analysis under single contingency. The results show that power can be transmitted to meet the growing energy demand over an existing network during normal and contingency conditions without violating voltage stability by making use of the proposed method in this pape

    Enhancement of Voltage Stability with Unified Power Flow Controller Considering Loadability Analysis

    Get PDF
    Voltage stability is an important issue in planning and operation of electric power system during both normal and under contingency conditions. This paper presents line voltage stability index (LVSI) for transmission lines voltage stability assessment and evaluation. The system stability under maximum loading and contingency conditions are analyzed using optimal power flow analysis. FACTS device is considered for a real-time control and a dynamic reactive power compensation of the system. Voltage source-based power injection model of unified power flow controller (UPFC) is used for the minimization of voltage deviation and losses on the network. Optimal location and sizing of UPFC is carried out using grey wolf optimization (GWO) technique in order to identify an optimal location where the FACTS device will be installed. UPFC device has proven to increase the line transmittable power, controls the voltage magnitude at the buses as well as enhancing the stability and security of the power system. The various conditions and scenarios used to test the efficacy of this model for system stability and security under contingency conditions are demonstrated on standard IEEE 14-bus test system

    Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network

    Get PDF
    This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system

    Control de voltaje en sistemas el茅ctricos de potencia usando transformadores con taps.

    Get PDF
    Para la operaci贸n normal de un sistema el茅ctrico de potencia se analiza y controla diferentes variables el茅ctricas, siendo una de las m谩s relevantes el nivel de voltaje en los nodos del sistema, en tal sentido un inadecuado monitoreo y control del voltaje pueden llevar al sistema el茅ctrico de potencia a un colapso, lo que ha ocasionado apagones masivos en diferentes pa铆ses a nivel mundial. Por lo expuesto, el presente trabajo se enfoca en realizar el control de voltaje mediante el uso de los taps de los transformadores de potencia. Para el efecto se ha elaborado el modelo matem谩tico del m茅todo de Newton- Raphson modificado, que permite considerar el efecto de los taps en los transformadores y su implicaci贸n en el control del voltaje en las barras del sistema, el cual es simulado en Matlab. A fin de validar la modelaci贸n propuesta, 茅sta es aplicada al sistema IEEE de 14 barras sujeto a distintas condiciones operativas, permitiendo de esta manera establecer los aspectos concluyentes en relaci贸n al aporte de la conservaci贸n de niveles de voltaje aceptables resultado de la representaci贸n de los taps de los transformadores de potencia.For a normal operation of an electric power system it is required to analyze and control different electrical variables being one of the most relevant the voltage in the nodes of the power system, in this sense an inadequate monitoring and voltage control of the power system could lead to a collapse of the power system something that has already happen in various countries and at a wide-world level. Therefore, this paper focuses on performing of voltage control by using the taps of the power transformers. For this purpose, a mathematical model of the modified Newton-Raphson method has been developed, which allows considering the effect of the taps on the transformers and their involvement in the control of the voltage in the bars of the system, which is simulated in Matlab. In order to validate the proposed modeling, it is applied to the IEEEE system of 14 buses subject to different operating conditions, thus allowing to establish the conclusive aspects in relation to the contribution of the conservation of acceptable voltage levels resulting from the representation of the taps of power transformers

    Review of Voltage Stability Indices

    Get PDF
    Voltage stability indices (VSIs) are very vital to voltage stability assessment; they have several areas of application such as distributed generation (DG) placement and sizing, detection of the critical regions, lines, and buses and contingency ranking and planning. These indices can be used to activate countermeasures against voltage instability. This article examines voltage stability indices with particular focus on line VSIs, and it highlights the classification, accuracy of VSIs, and enumerates for some selected line VSIs drawbacks and advantages as seen in literature

    Power System Loading Margin Enhancement by Optimal STATCOM Integration:a case study

    Get PDF
    Safe and secure network operation with acceptable voltage level has become a challenging task for utilities requiring corrective measures to be implemented. Network upgrades using Flexible Alternating Current Transmission System devices are being considered to serve this purpose. To this end, static loading margin enhancement by optimal static synchronous compensator (STATCOM) allocation to enhance the power transfer capability with minimal voltage variation is presented. Maximum loadability is formulated as an optimization problem, subjected to voltage and small-signal stability constraints. Stability indices are presented and incorporated with the optimization problem to ensure secure operation under maximum loading. The scheme is executed with the IEEE system and an Indian utility network. Improved voltage regulation with different loading condition was achieved for both test networks, with the service rendered by the optimally placed STATCOM. Moreover, it facilitates an additional 50% capacity release in both test systems for hosting the active power and loads

    Simulaci贸n de la Influencia del STATCOM en las P茅rdidas del Sistema de Potencia

    Get PDF
    The supply of growing electricity demand is possible through continuous technological advances and the expansion of national and international electrical systems. This scenario could introduce voltage drops and consequent changes in the reactive power flow throughout the electrical network. In order to control these problems, various strategies have been developed as a solution to improve the transport and distribution of electrical energy. One of them is the Flexible Alternating Current Transmission System (FACTS), and more specifically the STATic synchronous COMpensator (STATCOM). This paper investigates the influence and effectiveness of STATCOM to mitigate the losses in the transmission lines and its impacts on bus voltage drops. The simulations are performed using the software DIgSILENT PowerFactory and the results showed that STATCOM reduces the power system losses in an interval of 23.86% until 32.86%, and in addition, the STATCOM decreases the annual energy cost by 7.82% in the implemented test case.El abastecimiento de la creciente demanda el茅ctrica es posible a trav茅s de los continuos avances tecnol贸gicos y la expansi贸n de los sistemas el茅ctricos nacionales e internacionales. Este escenario podr铆a introducir ca铆das de tensi贸n y los consiguientes cambios en el flujo de potencia reactiva en toda la red el茅ctrica. Para controlar estos problemas se han desarrollado diversas estrategias como soluci贸n para mejorar el transporte y distribuci贸n de energ铆a el茅ctrica. Uno de ellos es el Sistema Flexible de Transmisi贸n de Corriente Alterna (FACTS), y m谩s concretamente el STATic synchronous COMpensator (STATCOM). Este art铆culo investiga la influencia y efectividad del STATCOM para mitigar las p茅rdidas en las l铆neas de transmisi贸n y sus impactos en las ca铆das de tensi贸n de las barras. Las simulaciones se realizan utilizando el software DIgSILENT PowerFactory y los resultados mostraron que el STATCOM reduce las p茅rdidas del sistema de potencia en un intervalo de 23,86% hasta 32,86%, y adem谩s, el STATCOM disminuye el costo anual de energ铆a en 7,82% en el caso de prueba implementado.
    corecore