1,685,988 research outputs found
High voltage assisted mechanical stabilization of single-molecule junctions
The realization of molecular-based electronic devices depends to a large
extent on the ability to mechanically stabilize the involved molecular bonds,
while making use of efficient resonant charge transport through the device.
Resonant charge transport can induce vibrational instability of molecular
bonds, leading to bond rupture under a bias voltage. In this work, we go beyond
the wide-band approximation in order to study the phenomenon of vibrational
instability in single molecule junctions and show that the energy-dependence of
realistic molecule-leads couplings affects the mechanical stability of the
junction. We show that the chemical bonds can be stabilized in the resonant
transport regime by increasing the bias voltage on the junction. This research
provides guidelines for the design of mechanically stable molecular devices
operating in the regime of resonant charge transport
Voltage Multistability and Pulse Emergency Control for Distribution System with Power Flow Reversal
High levels of penetration of distributed generation and aggressive reactive
power compensation may result in the reversal of power flows in future
distribution grids. The voltage stability of these operating conditions may be
very different from the more traditional power consumption regime. This paper
focused on demonstration of multistability phenomenon in radial distribution
systems with reversed power flow, where multiple stable equilibria co-exist at
the given set of parameters. The system may experience transitions between
different equilibria after being subjected to disturbances such as short-term
losses of distributed generation or transient faults. Convergence to an
undesirable equilibrium places the system in an emergency or \textit{in
extremis} state. Traditional emergency control schemes are not capable of
restoring the system if it gets entrapped in one of the low voltage equilibria.
Moreover, undervoltage load shedding may have a reverse action on the system
and can induce voltage collapse. We propose a novel pulse emergency control
strategy that restores the system to the normal state without any interruption
of power delivery. The results are validated with dynamic simulations of IEEE
-bus feeder performed with SystemModeler software. The dynamic models can
be also used for characterization of the solution branches via a novel approach
so-called the admittance homotopy power flow method.Comment: 13 pages, 22 figures. IEEE Transactions on Smart Grid 2015, in pres
Controllable high voltage source having fast settling time
A high voltage dc stepping power supply for sampling a utilization device such as an electrostatic analyzer has a relatively fast settling time for voltage steps. The supply includes a waveform generator for deriving a low voltage staircase waveform that feeds a relatively long response time power supply, deriving a high output voltage generally equal to a predetermined multiple of the input voltage. In the power supply, an ac voltage modulated by the staircase waveform is applied to a step-up transformer and then to a voltage multiplier stack to form a high voltage, relatively poor replica of the input waveform at an intermediate output terminal. A constant dc source, applied to the input of the power supply, biases the voltage at the intermediate output terminal to be in excess of the predetermined multiple of the input voltage
A hybrid multilevel converter for medium and high voltage applications
This paper investigates the suitability of the hybrid multilevel converter for medium and high voltage application. The converter operation, modulation, and capacitor voltage balancing method are described in detail. The ability of the hybrid multilevel converter to operate with different modulation indices and load power factors is investigated. It has been established that the hybrid multilevel converter is capable of operating independent of load power factor. Operation with variable modulation index increases voltage stresses on the converter switches and does not alter the fundamental voltage magnitude as in all known voltage source converter topologies. The viability of the hybrid multilevel converter for medium and high voltage applications is confirmed by simulations
Dynamic Voltage Scaling Aware Delay Fault Testing
The application of Dynamic Voltage Scaling (DVS) to reduce energy consumption may have a detrimental impact on the quality of manufacturing tests employed to detect permanent faults. This paper analyses the influence of different voltage/frequency settings on fault detection within a DVS application. In particular, the effect of supply voltage on different types of delay faults is considered. This paper presents a study of these problems with simulation results. We have demonstrated that the test application time increases as we reduce the test voltage. We have also shown that for newer technologies we do not have to go to very low voltage levels for delay fault testing. We conclude that it is necessary to test at more than one operating voltage and that the lowest operating voltage does not necessarily give the best fault cover
Nanoscale Voltage Enhancement at Cathode Interfaces in Li-ion Batteries
Interfaces are ubiquitous in Li-ion battery electrodes, occurring across
compositional gradients, regions of multiphase intergrowths, and between
electrodes and solid electrolyte interphases or protective coatings. However,
the impact of these interfaces on Li energetics remains largely unknown. In
this work, we calculated Li intercalation-site energetics across cathode
interfaces and demonstrated the physics governing these energetics on both
sides of the interface. We studied the olivine/olivine-structured
LixFePO4/LixMPO4 (x=0 and 1, M=Co, Ti, Mn) and layered/layered-structured
LiNiO2/TiO2 interfaces to explore different material structures and transition
metal elements. We found that across an interface from a high- to low-voltage
material the Li voltage remains constant in the high-voltage material and
decays approximately linearly in the low-voltage region, approaching the Li
voltage of the low-voltage material. This effect ranges from 0.5-9nm depending
on the interfacial dipole screening. This effect provides a mechanism for a
high-voltage material at an interface to significantly enhance the Li
intercalation voltage in a low-voltage material over nanometer scale. We showed
that this voltage enhancement is governed by a combination of electron transfer
(from low- to high-voltage regions), strain and interfacial dipole screening.
We explored the implications of this voltage enhancement for a novel
heterostructured-cathode design and redox pseudocapacitors
Scaling of resistivities and guided vortex motion in MgB2 thin films
Longitudinal and transverse voltages have been measured on thin films of MgB2
with different superconducting transition widths. The study has been performed
in zero and non-zero external magnetic fields. The non-zero transverse voltage
has been observed in close vicinity of the critical temperature in zero
external magnetic field, while further away from Tc this voltage becomes zero.
In magnetic field it becomes a transverse voltage which is an even function
with respect to the direction of the field. The usual Hall voltage starts to
appear with increasing magnetic field and in large fields the even voltage
disappears and only the Hall voltage is measurable (i.e. the transverse even
voltage is suppressed with increasing magnetic field and increasing transport
current). New scaling between transverse and longitudinal resistivities has
been observed. This correlation is valid not only in the zero magnetic field
but also in nonzero magnetic field where transverse even voltage is detected.
Several models trying to explain observed results are discussed. The most
promising one seems to be guided motion of the vortices, though further
theoretical work will be required to confirm this
- …
